Repository for the AugmentedPCA Python package.

Overview

AugmentedPCA logo

Overview

This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that find a set of factors aligned with an augmenting objective in addition to the canonical PCA objective of finding factors that represent the data variance. AugmentedPCA can be split into two general families of models: adversarial AugmentedPCA and supervised AugmentedPCA.

Supervised AugmentedPCA

In supervised AugmentedPCA (SAPCA), the augmenting objective is to make the factors aligned with the data labels, or some outcome, in addition to having the factors explain the variance of the original observed or primary data. SAPCA is useful when predictivity of latent components with respects to a set of data labels or outcomes is desired. SAPCA is equivalent to a supervised autoencoder (SAE) with a single hidden layer. Therefore, SAPCA can be applied to situations where the properties of latent representations enforced via deep SAEs are desired, yet where limited data or training inconsistencies are a concern. Below is a diagram depicting the relationship between primary data, supervision data, and the resulting SAPCA factors.

SAPCA diagram

Adversarial AugmentedPCA

In adversarial AugmentedPCA (AAPCA), the augmenting objective is to make the factors orthogonal to a set of concomitant data, in addition to having the factors explain the variance of the original observed or primary data. AAPCA can be used in situations where one wishes to enforce invariance of latent components to a set of concomitant data, and is equivalent to an adversarial autoencoder with a single hidden layer. Below is a diagram depicting the relationship between primary data, concomitant data, and the resulting AAPCA factors.

AAPCA diagram

Documentation

Documentation for AugmentedPCA is available on this documentation site.

Provided documentation includes:

  • Motivation - Motivation behind AugmentedPCA models and the different approximate inference strategies.

  • Model formulation - Overview of different models and approximate inference strategies as well as more in-depth mathematical descriptions.

  • Tutorials - Step-by-step guide on how to use the different offered AugmentedPCA models.

  • Examples - Use case examples for the different models.

Dependencies

The AugmentedPCA package is written in Python, and requires Python >= 3.6 to run. AugmentedPCA relies on the following libraries and version numbers:

Installation

To install the latest stable release, use pip. Use the following command to install:

$ pip install augmented-pca

Issue Tracking and Reports

Please use the GitHub issue tracker associated with the AugmentedPCA repository for issue tracking, filing bug reports, and asking general questions about the package or project.

Quick Introduction

A quick guide to using AugmentedPCA is given in this section. For a more in-depth guide, see our documentation.

Importing AugmentedPCA Models

APCA models can be imported from the models.py module. Below we show an example of importing the AAPCA model.

# Import all AugmentedPCA models
from apca.models import AAPCA

Alternatively, all offered AugmentedPCA models can be imported at once.

# Import all AugmentedPCA models
from apca.models import *

Instantiating AugmentedPCA Models

APCA models are instantiated by assigning either an SAPCA or AAPCA object to a variable. During instantiation, one has the option to define parameters n_components, mu, which represent the number of components and the augmenting objective strength, respectively. Additionally, approximate inference strategy can be defined through the inference parameter.

# Define model parameters
n_components = 2        # factors will have dimensionality of 2
mu = 1.0                # augmenting objective strength equal to 1 
inference = 'encoded'   # encoded approximate inference strategy

# Instantiate adversarial AugmentedPCA model
aapca = AAPCA(n_components=n_components, mu=mu, inference=inference)

Fitting AugmentedPCA Models

APCA models closely follow the style and implemention of scikit-learn's PCA implementation, with many of the same methods and functionality. Similar to scikit-learn models, AugmentedPCA models are fit using the fit() method. fit() takes two parameters: X which represents the matrix of primary data and Y which represents the matrix of augmenting data.

# Import numpy
import numpy as np

# Generate synthetic data
# Note: primary and augmenting data must have same number of samples/same first dimension size
n_samp = 100
X = np.random.randn(n_samp, 20)   # primary data, 100 samples with dimensionality of 20
Y = np.random.randn(n_samp, 3)    # concomitant data, 100 samples with dimensionality of 3

# Fit adversarial AugmentedPCA instance
aapca.fit(X=X, Y=Y)

Alternatively, AugmentedPCA models can be fit using the fit_transform() method, which takes the same parameters as the fit() method but also returns a matrix of components or factors.

# Fit adversarial AugmentedPCA instance and generate components
S = aapca.fit_transform(X=X, Y=Y)

Approximate Inference Strategies

In this section, we give a brief overview of the different approximate inference strategies offered for AugmentedPCA. Inference strategy should be chosen based on the data on which the AugmentedPCA model will be used as well as the specific use case. Both SAPCA and AAPCA models use the jointly-encoded approximate inference strategy by default.

Local

In the local approximate inference strategy, the factors (local variables associated with each observation) are included in both the likelihood relating and the augmenting objective. Below is a diagram from our paper depicting the local inference strategy.

local inference diagram

Because the local variables are included in the augmenting objective, given new data we must have both primary and augmenting data to obtain factors. Thus, the local inference strategy should only be used for inference on new data when both primary and augmenting data are available. Below we show an example of how to fit a SAPCA model with local approximate inference strategy to training data and obtain factors for test data.

# Import numpy
import numpy as np

# Import supervised AugmentedPCA
from apca.models import SAPCA

# Generate synthetic data and labels
n_samp = 100
X = np.random.randn(n_samp, 20)
Y = np.random.randint(low=0, high=1, size=(n_samp, 1), dtype=int)

# Generate test/train splits
train_pct = 0.7
idx = np.arange(start=0, stop=101, step=1, dtype=int)
np.random.shuffle(idx)
n_train = int(train_pct * len(idx))
train_idx = idx[:n_train]
test_idx = idx[n_train:]

# Split data into test/train sets
X_train = X[train_idx, :]
X_test = X[test_idx, :]
Y_train = Y[train_idx, :]
Y_test = Y[test_idx, :]

# Instantiate supervised AugmentedPCA model with local approximate inference strategy
sapca = SAPCA(n_components=3, mu=5.0, inference='local')

# Fit supervised AugmentedPCA model
sapca.fit(X=X_train, Y_train)

# Generate components for test set
# Note: both primary and augmenting data are needed to obtain factors
S_test = sapca.transform(X=X_test, Y=Y_test)

Note that when factors are generated for the test set that the transform() method requires both the primary data X_test and labels Y_test be passed as parameters. For a more in-depth description of the local approximate inference strategy, see our paper or the corresponding documentation section.

Encoded

In the encoded approximate inference strategy, a linear encoder is used to transform the data into factors or components. This inference strategy is termed "encoded" because the augmenting objective is enforced via an encoding function. Below is a diagram depicting the encoded inference strategy.

encoded inference diagram

In contrast to the local inference strategy, when factors are generated for the test set under the encoded inference strategy the transform() method only requires the primary data X_test. Below we show an example of how to fit a SAPCA model with encoded approximate inference strategy to training data and obtain factors for test data.

# Instantiate supervised AugmentedPCA model model with encoded approximate inference strategy
sapca = SAPCA(n_components=3, mu=5.0, inference='encoded')

# Fit supervised AugmentedPCA model
# Note: both primary and augmenting data are required to fit the model
sapca.fit(X=X_train, Y_train)

# Generate components for test set
# Note: only primary data are needed to obtain factors
S_test = sapca.transform(X=X_test)

For a more in-depth description of the encoded approximate inference strategy, see our paper or the corresponding documentation section.

Jointly-Encoded

The jointly-encoded approximate inference strategy is similar to the encoded in that the augmenting objective is enforced through a linear encoding matrix. However, in the jointly-encoded inference strategy both the primary and augmenting data are required for computing factors, similar to the local inference strategy. Below is a diagram depicting the jointly-encoded inference strategy.

jointly-encoded inference diagram

Similar to the local inference strategy, when factors are generated for the test set under the jointly-encoded inference strategy the transform() method requires both the primary data X_test and augmenting data Y_test. Below we show an example of how to fit a SAPCA model with jointly-encoded approximate inference strategy to training data and obtain factors for test data.

# Instantiate supervised AugmentedPCA model model with encoded approximate inference strategy
sapca = SAPCA(n_components=3, mu=5.0, inference='encoded')

# Fit supervised AugmentedPCA model
# Note: both primary and augmenting data are required to fit the model
sapca.fit(X=X_train, Y_train)

# Generate components for test set
# Note: both primary and augmenting data are needed to obtain factors
S_test = sapca.transform(X=X_test)

For a more in-depth description of the jointly-encoded approximate inference strategy, see our paper or the corresponding documentation section.

Citation

Please cite our paper if you find this package helpful in your research:

@inproceedings{carson2021augmentedpca,
title={{AugmentedPCA}: {A} {P}ython {P}ackage of {S}upervised and {A}dversarial {L}inear {F}actor {M}odels},
author={{Carson IV}, William E. and Talbot, Austin and Carlson, David},
year={2021},
month={December},
booktitle={{P}roceedings of {L}earning {M}eaningful {R}epresentations of {L}ife {W}orkshop at {NeurIPS} 2021}}

Funding

This project was supported by the National Institute of Biomedical Imaging and Bioengineering and the National Institute of Mental Health through the National Institutes of Health BRAIN Initiative under Award Number R01EB026937.

Owner
Billy Carson
Biomedical Engineering PhD candidate at Duke University using machine learning to investigate neurodevelopmental conditions and learn about the human brain.
Billy Carson
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022