Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

Overview

LiDAR fog simulation

PWC

Created by Martin Hahner at the Computer Vision Lab of ETH Zurich.

This is the official code release of the paper
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather
by Martin Hahner, Christos Sakaridis, Dengxin Dai, and Luc van Gool, accepted at ICCV 2021.

Please visit our paper website for more details.

pointcloud_viewer

Overview

.
├── file_lists                          # contains file lists for pointcloud_viewer.py
│   └── ...
├── integral_lookup_tables              # contains lookup tables to speed up the fog simulation
│   └── ... 
├── extract_fog.py                      # to extract real fog noise* from the SeeingThroughFog dataset
├── fog_simulation.py                   # to augment a clear weather pointcloud with artificial fog (used during training)
├── generate_integral_lookup_table.py   # to precompute the integral inside the fog equation
├── pointcloud_viewer.py                # to visualize entire point clouds of different datasets with the option to augment fog into their scenes
├── README.md
└── theory.py                           # to visualize the theory behind a single LiDAR beam in foggy conditions

* Contains returns not only from fog, but also from physical objects that are closeby.

Datasets supported by pointcloud_viewer.py:

License

This software is made available for non-commercial use under a Creative Commons License.
A summary of the license can be found here.

Acknowledgments

This work is supported by Toyota via the TRACE project.

Furthermore, we would like to thank the authors of SeeingThroughFog for their great work.
In this repository, we use a fork of their original repository to visualize annotations and compare to their fog simulation. Their code is licensed via the MIT License.

Citation

If you find this work useful, please consider citing our paper.

@inproceedings{HahnerICCV21,
  author = {Hahner, Martin and Sakaridis, Christos and Dai, Dengxin and Van Gool, Luc},
  title = {Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather},
  booktitle = {IEEE International Conference on Computer Vision (ICCV)},
  year = {2021},
}

Getting Started

Setup

  1. Install anaconda.

  2. Create a new conda environment.

conda create --name foggy_lidar python=3.9 -y
  1. Activate the newly created conda environment.
conda activate foggy_lidar
  1. Install all necessary packages.
conda install matplotlib numpy opencv pandas plyfile pyopengl pyqt pyqtgraph quaternion scipy tqdm -c conda-forge -y
pip install pyquaternion
  1. Clone this repository (including submodules).
git clone [email protected]:MartinHahner/LiDAR_fog_sim.git --recursive
cd LiDAR_fog_sim

Usage

How to run the script that visualizes the theory behind a single LiDAR beam in foggy conditions:

python theory.py

theory

How to run the script that visualizes entire point clouds of different datasets:

python pointcloud_viewer.py -d <path_to_where_you_store_your_datasets>

Note:

You may also have to adjust the relative paths in pointcloud_viewer.py (right at the beginning of the file) to be compatible with your datasets relative folder structure.

Disclaimer

The code has been successfully tested on

  • Ubuntu 18.04.5 LTS
  • macOS Big Sur 11.2.1
  • Debian GNU/Linux 9.13

using conda 4.9.2.

Contributions

Please feel free to suggest improvements to this repository.
We are always open to merge usefull pull request.

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023