Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

Overview

Python 3.6

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes

Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Chang-Su Kim

overview

Official implementation for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes" [paper] [supp] [video].

We construct a new dataset called "SDLane". SDLane is available at here. Now, only test set is provided due to privacy issues. All dataset will be provided soon.

Video

Video

Related work

We wil also present another paper, "Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation", accepted to CVPR 2022 (oral) [github] [video].

Requirements

  • PyTorch >= 1.6
  • CUDA >= 10.0
  • CuDNN >= 7.6.5
  • python >= 3.6

Installation

  1. Download repository. We call this directory as ROOT:
$ git clone https://github.com/dongkwonjin/Eigenlanes.git
  1. Download pre-trained model parameters and preprocessed data in ROOT:
$ cd ROOT
$ unzip pretrained.zip
$ unzip preprocessed.zip
  1. Create conda environment:
$ conda create -n eigenlanes python=3.7 anaconda
$ conda activate eigenlanes
  1. Install dependencies:
$ conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
$ pip install -r requirements.txt

Directory structure

.                           # ROOT
├── Preprocessing           # directory for data preprocessing
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── P00             # preprocessing step 1
|   |   |   ├── code
|   |   ├── P01             # preprocessing step 2
|   |   |   ├── code
|   │   └── ...
│   └── ...                 # etc.
├── Modeling                # directory for modeling
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── code
│   ├── tusimple           
|   |   ├── code
│   └── ...                 # etc.
├── pretrained              # pretrained model parameters 
│   ├── culane              
│   ├── tusimple            
│   └── ...                 # etc.
├── preprocessed            # preprocessed data
│   ├── culane              # dataset name (culane, tusimple)
|   |   ├── P03             
|   |   |   ├── output
|   |   ├── P04             
|   |   |   ├── output
|   │   └── ...
│   └── ...
.

Evaluation (for CULane)

To test on CULane, you need to install official CULane evaluation tools. The official metric implementation is available here. Please downloads the tools into ROOT/Modeling/culane/code/evaluation/culane/. The tools require OpenCV C++. Please follow here to install OpenCV C++. Then, you compile the evaluation tools. We recommend to see an installation guideline

$ cd ROOT/Modeling/culane/code/evaluation/culane/
$ make

Train

  1. Set the dataset you want to train (DATASET_NAME)
  2. Parse your dataset path into the -dataset_dir argument.
  3. Edit config.py if you want to control the training process in detail
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode train --pre_dir ROOT/preprocessed/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/ 

Test

  1. Set the dataset you want to test (DATASET_NAME)
  2. Parse your dataset path into the -dataset_dir argument.
  3. If you want to get the performances of our work,
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode test_paper --pre_dir ROOT/preprocessed/DATASET_NAME/ --paper_weight_dir ROOT/pretrained/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/
  1. If you want to evaluate a model you trained,
$ cd ROOT/Modeling/DATASET_NAME/code/
$ python main.py --run_mode test --pre_dir ROOT/preprocessed/DATASET_NAME/ --dataset_dir /where/is/your/dataset/path/

Preprocessing

example

Data preprocessing is divided into five steps, which are P00, P01, P02, P03, and P04. Below we describe each step in detail.

  1. In P00, the type of ground-truth lanes in a dataset is converted to pickle format.
  2. In P01, each lane in a training set is represented by 2D points sampled uniformly in the vertical direction.
  3. In P02, lane matrix is constructed and SVD is performed. Then, each lane is transformed to its coefficient vector.
  4. In P03, clustering is performed to obtain lane candidates.
  5. In P04, training labels are generated to train the SI module in the proposed SIIC-Net.

If you want to get the preproessed data, please run the preprocessing codes in order. Also, you can download the preprocessed data.

$ cd ROOT/Preprocessing/DATASET_NAME/PXX_each_preprocessing_step/code/
$ python main.py --dataset_dir /where/is/your/dataset/path/

Reference

@Inproceedings{
    Jin2022eigenlanes,
    title={Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes},
    author={Jin, Dongkwon and Park, Wonhui and Jeong, Seong-Gyun and Kwon, Heeyeon and Kim, Chang-Su},
    booktitle={CVPR},
    year={2022}
}
Owner
Dongkwon Jin
BS: EE, Korea University Grad: EE, Korea University (Current)
Dongkwon Jin
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022