Bilinear attention networks for visual question answering

Overview

Bilinear Attention Networks

This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entities tasks.

For the visual question answering task, our single model achieved 70.35 and an ensemble of 15 models achieved 71.84 (Test-standard, VQA 2.0). For the Flickr30k Entities task, our single model achieved 69.88 / 84.39 / 86.40 for [email protected], 5, and 10, respectively (slightly better than the original paper). For the detail, please refer to our technical report.

This repository is based on and inspired by @hengyuan-hu's work. We sincerely thank for their sharing of the codes.

Overview of bilinear attention networks

Updates

  • Bilinear attention networks using torch.einsum, backward-compatible. (12 Mar 2019)
  • Now compatible with PyTorch v1.0.1. (12 Mar 2019)

Prerequisites

You may need a machine with 4 GPUs, 64GB memory, and PyTorch v1.0.1 for Python 3.

  1. Install PyTorch with CUDA and Python 3.6.
  2. Install h5py.

WARNING: do not use PyTorch v1.0.0 due to a bug which induces underperformance.

VQA

Preprocessing

Our implementation uses the pretrained features from bottom-up-attention, the adaptive 10-100 features per image. In addition to this, the GloVe vectors. For the simplicity, the below script helps you to avoid a hassle.

All data should be downloaded to a data/ directory in the root directory of this repository.

The easiest way to download the data is to run the provided script tools/download.sh from the repository root. If the script does not work, it should be easy to examine the script and modify the steps outlined in it according to your needs. Then run tools/process.sh from the repository root to process the data to the correct format.

For now, you should manually download for the below options (used in our best single model).

We use a part of Visual Genome dataset for data augmentation. The image meta data and the question answers of Version 1.2 are needed to be placed in data/.

We use MS COCO captions to extract semantically connected words for the extended word embeddings along with the questions of VQA 2.0 and Visual Genome. You can download in here. Since the contribution of these captions is minor, you can skip the processing of MS COCO captions by removing cap elements in the target option in this line.

Counting module (Zhang et al., 2018) is integrated in this repository as counting.py for your convenience. The source repository can be found in @Cyanogenoid's vqa-counting.

Training

$ python3 main.py --use_both True --use_vg True

to start training (the options for the train/val splits and Visual Genome to train, respectively). The training and validation scores will be printed every epoch, and the best model will be saved under the directory "saved_models". The default hyperparameters should give you the best result of single model, which is around 70.04 for test-dev split.

Validation

If you trained a model with the training split using

$ python3 main.py

then you can run evaluate.py with appropriate options to evaluate its score for the validation split.

Pretrained model

We provide the pretrained model reported as the best single model in the paper (70.04 for test-dev, 70.35 for test-standard).

Please download the link and move to saved_models/ban/model_epoch12.pth (you may encounter a redirection page to confirm). The training log is found in here.

$ python3 test.py --label mytest

The result json file will be found in the directory results/.

Without Visual Genome augmentation

Without the Visual Genome augmentation, we get 69.50 (average of 8 models with the standard deviation of 0.096) for the test-dev split. We use the 8-glimpse model, the learning rate is starting with 0.001 (please see this change for the better results), 13 epochs, and the batch size of 256.

Flickr30k Entities

Preprocessing

You have to manually download Annotation and Sentence files to data/flickr30k/Flickr30kEntities.tar.gz. Then run the provided script tools/download_flickr.sh and tools/process_flickr.sh from the root of this repository, similarly to the case of VQA. Note that the image features of Flickr30k were generated using bottom-up-attention pretrained model.

Training

$ python3 main.py --task flickr --out saved_models/flickr

to start training. --gamma option does not applied. The default hyperparameters should give you approximately 69.6 for [email protected] for the test split.

Validation

Please download the link and move to saved_models/flickr/model_epoch5.pth (you may encounter a redirection page to confirm).

$ python3 evaluate.py --task flickr --input saved_models/flickr --epoch 5

to evaluate the scores for the test split.

Troubleshooting

Please check troubleshooting wiki and previous issue history.

Citation

If you use this code as part of any published research, we'd really appreciate it if you could cite the following paper:

@inproceedings{Kim2018,
author = {Kim, Jin-Hwa and Jun, Jaehyun and Zhang, Byoung-Tak},
booktitle = {Advances in Neural Information Processing Systems 31},
title = {{Bilinear Attention Networks}},
pages = {1571--1581},
year = {2018}
}

License

MIT License

Owner
Jin-Hwa Kim
Jin-Hwa Kim
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022