Bilinear attention networks for visual question answering

Overview

Bilinear Attention Networks

This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entities tasks.

For the visual question answering task, our single model achieved 70.35 and an ensemble of 15 models achieved 71.84 (Test-standard, VQA 2.0). For the Flickr30k Entities task, our single model achieved 69.88 / 84.39 / 86.40 for [email protected], 5, and 10, respectively (slightly better than the original paper). For the detail, please refer to our technical report.

This repository is based on and inspired by @hengyuan-hu's work. We sincerely thank for their sharing of the codes.

Overview of bilinear attention networks

Updates

  • Bilinear attention networks using torch.einsum, backward-compatible. (12 Mar 2019)
  • Now compatible with PyTorch v1.0.1. (12 Mar 2019)

Prerequisites

You may need a machine with 4 GPUs, 64GB memory, and PyTorch v1.0.1 for Python 3.

  1. Install PyTorch with CUDA and Python 3.6.
  2. Install h5py.

WARNING: do not use PyTorch v1.0.0 due to a bug which induces underperformance.

VQA

Preprocessing

Our implementation uses the pretrained features from bottom-up-attention, the adaptive 10-100 features per image. In addition to this, the GloVe vectors. For the simplicity, the below script helps you to avoid a hassle.

All data should be downloaded to a data/ directory in the root directory of this repository.

The easiest way to download the data is to run the provided script tools/download.sh from the repository root. If the script does not work, it should be easy to examine the script and modify the steps outlined in it according to your needs. Then run tools/process.sh from the repository root to process the data to the correct format.

For now, you should manually download for the below options (used in our best single model).

We use a part of Visual Genome dataset for data augmentation. The image meta data and the question answers of Version 1.2 are needed to be placed in data/.

We use MS COCO captions to extract semantically connected words for the extended word embeddings along with the questions of VQA 2.0 and Visual Genome. You can download in here. Since the contribution of these captions is minor, you can skip the processing of MS COCO captions by removing cap elements in the target option in this line.

Counting module (Zhang et al., 2018) is integrated in this repository as counting.py for your convenience. The source repository can be found in @Cyanogenoid's vqa-counting.

Training

$ python3 main.py --use_both True --use_vg True

to start training (the options for the train/val splits and Visual Genome to train, respectively). The training and validation scores will be printed every epoch, and the best model will be saved under the directory "saved_models". The default hyperparameters should give you the best result of single model, which is around 70.04 for test-dev split.

Validation

If you trained a model with the training split using

$ python3 main.py

then you can run evaluate.py with appropriate options to evaluate its score for the validation split.

Pretrained model

We provide the pretrained model reported as the best single model in the paper (70.04 for test-dev, 70.35 for test-standard).

Please download the link and move to saved_models/ban/model_epoch12.pth (you may encounter a redirection page to confirm). The training log is found in here.

$ python3 test.py --label mytest

The result json file will be found in the directory results/.

Without Visual Genome augmentation

Without the Visual Genome augmentation, we get 69.50 (average of 8 models with the standard deviation of 0.096) for the test-dev split. We use the 8-glimpse model, the learning rate is starting with 0.001 (please see this change for the better results), 13 epochs, and the batch size of 256.

Flickr30k Entities

Preprocessing

You have to manually download Annotation and Sentence files to data/flickr30k/Flickr30kEntities.tar.gz. Then run the provided script tools/download_flickr.sh and tools/process_flickr.sh from the root of this repository, similarly to the case of VQA. Note that the image features of Flickr30k were generated using bottom-up-attention pretrained model.

Training

$ python3 main.py --task flickr --out saved_models/flickr

to start training. --gamma option does not applied. The default hyperparameters should give you approximately 69.6 for [email protected] for the test split.

Validation

Please download the link and move to saved_models/flickr/model_epoch5.pth (you may encounter a redirection page to confirm).

$ python3 evaluate.py --task flickr --input saved_models/flickr --epoch 5

to evaluate the scores for the test split.

Troubleshooting

Please check troubleshooting wiki and previous issue history.

Citation

If you use this code as part of any published research, we'd really appreciate it if you could cite the following paper:

@inproceedings{Kim2018,
author = {Kim, Jin-Hwa and Jun, Jaehyun and Zhang, Byoung-Tak},
booktitle = {Advances in Neural Information Processing Systems 31},
title = {{Bilinear Attention Networks}},
pages = {1571--1581},
year = {2018}
}

License

MIT License

Owner
Jin-Hwa Kim
Jin-Hwa Kim
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023