Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Related tags

Deep LearningRealVSR
Overview

Dataset and Code for RealVSR

Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme
Xi Yang, Wangmeng Xiang, Hui Zeng and Lei Zhang
International Conference on Computer Vision, 2021.

Dataset

The dataset is hosted on Google Drive and Baidu Drive (code: 43ph). Some example scenes are shown below.

dataset_samples

The structure of the dataset is illustrated below.

File Description
GT.zip All ground truth sequences in RGB format
LQ.zip All low quality sequences in RGB format
GT_YCbCr.zip All ground truth sequences in YCbCr format
LQ_YCbCr.zip All low quality sequences in YCbCr format
GT_test.zip Ground truth test sequences in RGB format
LQ_test.zip Low Quality test sequences in RGB format
GT_YCbCr_test.zip Ground truth test sequences in YCbCr format
LQ_YCbCr_test.zip Low Quality test sequences in YCbCr format

Code

Dependencies

  • Linux (tested on Ubuntu 18.04)
  • Python 3 (tested on python 3.7)
  • NVIDIA GPU + CUDA (tested on CUDA 10.2 and 11.1)

Installation

# Create a new anaconda python environment (realvsr)
conda create -n realvsr python=3.7 -y

# Activate the created environment
conda activate realvsr

# Install dependencies
pip install -r requirements.txt

# Bulid the DCN module
cd codes/models/archs/dcn
python setup.py develop

Training

Modify the configuration files accordingly in codes/options/train folder and run the following command (current we did not implement distributed training):

python train.py -opt xxxxx.yml

Testing

Test on RealVSR testing set sequences:

Modify the configuration in test_RealVSR_wi_GT.py and run the following command:

python test_RealVSR_wi_GT.py

Test on real-world captured sequences:

Modify the configuration in test_RealVSR_wo_GT.py and run the following command:

python test_RealVSR_wo_GT.py

Pre-trained Models

Some pretrained models could be found on Google Drive and Baidu Drive (code: n1n0).

License

This project is released under the Apache 2.0 license.

Citation

If you find this code useful in your research, please consider citing:

@article{yang2021real,
  title={Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme},
  author={YANG, Xi and Xiang, Wangmeng and Zeng, Hui and Zhang, Lei},
  journal=ICCV,
  year={2021}
}

Acknowledgement

This implementation largely depends on EDVR. Thanks for the excellent codebase! You may also consider migrating it to BasicSR.

Owner
Xi Yang
PhD Candidate @ PolyU, working on low-level computer vision
Xi Yang
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
2 Jul 19, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022