Official TensorFlow code for the forthcoming paper

Overview

arXiv PWC PWC License

~ Efficient-CapsNet ~

Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

This repository has been made for two primarly reasons:

  • open source the code (most of) developed during our "first-stage" research on capsules, summarized by the forthcoming article "Efficient-CapsNet: Capsule Network with Self-Attention Routing". The repository let you play with Efficient-CapsNet and let you set the base for your own experiments.
  • be an hub and a headlight in the cyberspace to spread to the machine learning comunity the intrinsic potential and value of capsule. However, albeit remarkable results achieved by capsule networks, we're fully aware that they're only limited to toy datasets. Nevertheless, there's a lot to make us think that with the right effort and collaboration of the scientific community, capsule based networks could really make a difference in the long run. For now, feel free to dive in our work :))

1.0 Getting Started

1.1 Installation

Python3 and Tensorflow 2.x are required and should be installed on the host machine following the official guide. Good luck with it!

  1. Clone this repository
    git clone https://github.com/EscVM/Efficient-CapsNet.git
  2. Install the required packages
    pip3 install -r requirements.txt

Peek inside the requirements file if you have everything already installed. Most of the dependencies are common libraries.

2.0 Efficient-CapsNet Notebooks

The repository provides two starting notebooks to make you confortable with our architecture. They all have the information and explanations to let you dive further in new research and experiments. The first one let you test Efficient-CapsNet over three different datasets. The repository is provided with some of the weights derived by our own experiments. On the other hand, the second one let you train the network from scratch. It's a very lightweight network so you don't need "Deep Mind" TPUs arsenal to train it. However, even if a GP-GPU is not compulsory, it's strongly suggested (No GPU, no deep learning, no party).

3.0 Original CapsNet Notebooks

It goes without saying that our work has been inspiered by Geoffrey Hinton and his article "Dynamic Routing Between Capsules". It's really an honor to build on his idea. Nevertheless, when we did our first steps in the capsule world, we were pretty disappointed in finding that all repositories/implementations were ultimately wrong in some aspects. So, we implemented everything from scratch, carefully following the original Sara's repository. However, our implementation, besides beeing written for the new TensorFlow 2 version, is much more easier and practical to use. Sara's one is really overcomplicated and too mazy that you can lost pretty easily.

As for the previous section we provide two notebooks, one for testing (weights have been derived from Sara's repository) and one for training.

Nevertheless, there's a really negative note (at least for us:)); as all other repositories that you can find on the web, also our one is not capable to achieve the scores reported in their paper. We really did our best, but there is no way to make the network achieve a score greater than 99.64% on MNIST. Exactly for this reason, weights provided in this repository are derived from their repository. Anyway, it's Geoffrey so we can excuse him.

4.0 Capsules Dimensions Perturbation Notebook

The network is trained with a reconstruction regularizer that is simply a fully connected network trained in conjuction with the main one. So, we can use it to visualize the inner capsules reppresentations. In particular, we should expect that a dimension of a digit capsule should learn to span the space of variations in the way digits of that class are instantiated. We can see what the individual dimensions represent by making use of the decoder network and injecting some noise to one of the dimensions of the main digit capsule layer that is predicting the class of the input.

So, we coded a practical notebook in which you can dynamically tweak whichever dimension you want of the capsule that is making the prediction (longest one).

Finally, if you don't have the necessary resources (GP-GPU holy grail) you can still try this interesting notebook out on Colab.

Citation

Use this bibtex if you enjoyed this repository and you want to cite it:

@article{mazzia2021efficient,
  title={Efficient-CapsNet: Capsule Network withSelf-Attention Routing},
  author={Mazzia, Vittorio and Salvetti, Francesco and Chiaberge, Marcello},
  year={2021},
  journal={arXiv preprint arXiv:2101.12491},
}
Owner
Vittorio Mazzia
Ph.D. Student in Machine Learning and Artificial Intelligence
Vittorio Mazzia
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022