SMPLpix: Neural Avatars from 3D Human Models

Related tags

Deep Learningsmplpix
Overview
subject0_validation_poses.mp4

Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video.

SMPLpix: Neural Avatars from 3D Human Models

SMPLpix neural rendering framework combines deformable 3D models such as SMPL-X with the power of image-to-image translation frameworks (aka pix2pix models).

Please check our WACV 2021 paper or a 5-minute explanatory video for more details on the framework.

Important note: this repository is a re-implementation of the original framework, made by the same author after the end of internship. It does not contain the original Amazon multi-subject, multi-view training data and code, and uses full mesh rasterizations as inputs rather than point projections (as described here).

Demo

Description Link
Process a video into a SMPLpix dataset Open In Colab
Train SMPLpix Open In Colab

Prepare the data

demo_openpose_simplifyx

We provide the Colab notebook for preparing SMPLpix training dataset. This will allow you to create your own neural avatar given monocular video of a human moving in front of the camera.

Run demo training

We provide some preprocessed data which allows you to run and test the training pipeline right away:

git clone https://github.com/sergeyprokudin/smplpix
cd smplpix
python setup.py install
python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_url='https://www.dropbox.com/s/coapl05ahqalh09/smplpix_data_test_final.zip?dl=0'

Train on your own data

You can train SMPLpix on your own data by specifying the path to the root directory with data:

python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_dir='/path/to/data'

The directory should contain train, validation and test folders, each of which should contain input and output folders. Check the structure of the demo dataset for reference.

You can also specify various parameters of training via command line. E.g., to reproduce the results of the demo video:

python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_url='https://www.dropbox.com/s/coapl05ahqalh09/smplpix_data_test_final.zip?dl=0' \
                        --downsample_factor=2 \
                        --n_epochs=500 \
                        --sched_patience=2 \
                        --batch_size=4 \
                        --n_unet_blocks=5 \
                        --n_input_channels=3 \
                        --n_output_channels=3 \
                        --eval_every_nth_epoch=10

Check the args.py for the full list of parameters.

More examples

Animating with novel poses

subject0_test_poses.mp4

Left: poses from the test video sequence, right: SMPLpix renders.

Rendering faces

deca_smplpix_test_renders.mp4

Left: FLAME face model inferred with DECA, middle: ground truth test video, right: SMPLpix render.

Thanks to Maria Paola Forte for providing the sequence.

Few-shot artistic neural style transfer

kabarov_animations.mp4

Left: rendered AMASS motion sequence, right: generated SMPLpix animations. See the explanatory video for details.

Credits to Alexander Kabarov for providing the training sketches.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{prokudin2021smplpix,
  title={SMPLpix: Neural Avatars from 3D Human Models},
  author={Prokudin, Sergey and Black, Michael J and Romero, Javier},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={1810--1819},
  year={2021}
}

License

See the LICENSE file.

Owner
Sergey Prokudin
Postdoctoral researcher in computer vision and machine learning
Sergey Prokudin
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022