This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

Overview

Hybrid-Self-Attention-NEAT

Abstract

This repository contains the code to reproduce the results presented in the original paper.
In this article, we present a “Hybrid Self-Attention NEAT” method to improve the original NeuroEvolution of Augmenting Topologies (NEAT) algorithm in high-dimensional inputs. Although the NEAT algorithm has shown a significant result in different challenging tasks, as input representations are high dimensional, it cannot create a well-tuned network. Our study addresses this limitation by using self-attention as an indirect encoding method to select the most important parts of the input. In addition, we improve its overall performance with the help of a hybrid method to evolve the final network weights. The main conclusion is that Hybrid Self-Attention NEAT can eliminate the restriction of the original NEAT. The results indicate that in comparison with evolutionary algorithms, our model can get comparable scores in Atari games with raw pixels input with a much lower number of parameters.

NOTE: The original implementation of self-attention for atari-games, and the NEAT algorithm can be found here:
Neuroevolution of Self-Interpretable Agents: https://github.com/google/brain-tokyo-workshop/tree/master/AttentionAgent
Pure python library for the NEAT and other variations: https://github.com/ukuleleplayer/pureples

Execution

To use this work on your researches or projects you need:

  • Python 3.7
  • Python packages listed in requirements.txt

NOTE: The following commands are based on Ubuntu 20.04

To install Python:

First, check if you already have it installed or not.

python3 --version

If you don't have python 3.7 in your computer you can use the code below:

sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get update
sudo apt-get install python3.7
sudo apt install python3.7-distutils

To install packages via pip install:

python3.7 -m pip install -r requirements.txt

To run this project on Ubuntu server:

You need to uncomment the following lines in experiments/configs/configs.py

_display = pyvirtualdisplay.Display(visible=False, size=(1400, 900))
_display.start()

And also install some system dependencies as well

apt-get install -y xvfb x11-utils

To train the model:

  • First, check the configuration you need. The default ones are listed in experiments/configs/.
  • We highly recommend increasing the number of population size, and the number of iterations to get better results.
  • Check the working directory to be: ~/Hybrid_Self_Attention_NEAT/
  • Run the runner.py as below:
python3.7 -m experiment.runner

NOTE: If you have limited resources (like RAM), you should decrease the number of iterations and instead use loops command

for i in {1..
   
    }; do python3.7 -m experiment.runner; done

   

To tune the model:

  • First, check you trained the model, and the model successfully saved in experiments/ as main_model.pkl
  • Run the tunner.py as below:
python3.7 -m experiment.tunner

NOTE: If you have limited resources (like RAM), you should decrease the number of iterations and instead use loops command

for i in {1..
   
    }; do python3.7 -m experiment.tunner; done

   

Citation

For attribution in academic contexts, please cite this work as:

@misc{khamesian2021hybrid,
    title           = {Hybrid Self-Attention NEAT: A novel evolutionary approach to improve the NEAT algorithm}, 
    author          = {Saman Khamesian and Hamed Malek},
    year            = {2021},
    eprint          = {2112.03670},
    archivePrefix   = {arXiv},
    primaryClass    = {cs.NE}
}
Owner
Saman Khamesian
Data Science Specialist at Mofid Securities
Saman Khamesian
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022