A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

Related tags

Deep LearningHDG
Overview

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms

This repo contains:

  • the HDG implementation (Matlab codes) for 'Analysis and Evaluation of Kinect-based Action Recognition Algorithms', and
  • provides the links (google drive) for downloading the algorithms evaluated in our TIP journal and
  • provides direct links (google drive) to download 5 smaller datasets for action recognition research.

1 Introduction

This repository contains the implementation of HDG presented in the following paper:

[1] Lei Wang, 2017. Analysis and Evaluation of Kinect-based Action Recognition Algorithms. Master's thesis. School of Computer Science and Software Engineering, The University of Western Australia. [ArXiv] [BibTex]

[2] Lei Wang, Du Q. Huynh, and Piotr Koniusz. A Comparative Review of Recent Kinect-Based Action Recognition Algorithms. IEEE Transactions on Image Processing, 29: 15-28, 2020. [ArXiv] [BibTex]

We also provide the links for downloading the algorithms/datasets used in our TIP paper.

2 Other algorithms compared in TIP paper

You can download other algorithms we evaluated in TIP paper from the following links:

3 Datasets used in TIP paper

3.1 Five Smaller datasets

3.1.1 Depth+Skeleton

You can directly download the depth+skeleton sequences for the following smaller datasets here:

The above 5 downloaded datasets contain depth + skeleton data, which you can directly use for HDG algorithm in this repo:

  • unzip a dataset, and
  • put the Dataset folder into HDG folder, then
  • extract the features (refer to following sections for more details).

3.1.2 Depth video only

For downloading the UWA3DActivity+UWA3D Multiview Activity II depth only, you can use this link(extraction code: 172h).

For downloading the CAD-60 depth only, please use this link (extraction code: 36wt)

3.2 Big datasets (NTU RGB+D)

For big datasets such as NTU-60 and NTU-120, please refer to this link for the request to download.

4 Run the codes of HDG

This is an implementation based on Rahmani et al.’s paper ‘Real Time Action Recognition Using Histograms of Depth Gradients and Random Decision Forests’ (WACV2014).

To run our new HDG algorithm (which is analysed and compared in our TIP2020 paper):

4.0 A glance of skeleton configuration

To know more detailed information about the skeleton configuration/graph, please refer to the pdf file attached in this repo.

UWAS denotes the skeleton configuration for UWA3D Activity, and UWAW is for UWA3D Multiview Activity II.

4.1 Data preparation

  • Go to the 'Dataset' folder, then go to the 'depth' folder and copy all depth sequence in this folder (should be .mat format and the internal data has the same name 'inDepthVideo').

  • After that go to the 'skeleton' folder, copy all skeleton sequence (the skeleton sequence should also be .mat format and each skeleton sequence has the following dimension: #jointsx3x#frames, here 3 represents x, y and d respectively), the internal data has the same name 'skeletonsequence'.

4.2 Feature extraction and concatenation

  • Go to the 'MATLAB_Codes' folder, run each 'main' in each algorithm folder(in the order of 00, 01, 02 and 03), and then run 'main' in 'feature_concatenating'. You can also run '02' and '03' first and then run '00' and '01', since '00' may need more time for segmenting the foreground (around 6 hours) and '01' is based on the results of '00'.

  • For UWAMultiview dataset, remember to change the video sequence from uint16 to double using im2double before running each main in 00 and 01: in both 00 and 01 folders, in main function line 33 & 17, change depthsequence=actionvolume; to depthsequence=im2double(actionvolume);.

  • For feature concatenating, you can select different combinations of features for classification. There are four features, which are:

    • hod(histogram of depth),
    • hodg(histogram of depth gradients),
    • jmv(joint movement volume features) and
    • jpd(joint position differences features).
  • Remember to change the number of joints and the torso joint ID in the 'main' of '02' and '03' since different datasets have different number of joints and torso joint IDs (refer to the pdf attached in this repo for the skeleton configuration).

    • MSRPairs (3D Action Pairs): 20 joints, torso joint ID is '2';
    • MSRAction3D: 20 joints, torso joint ID is '4';
    • CAD-60: 15 joints, torso joint ID is '3';
    • UWA3D single view dataset (UWA3D Activity): 15 joints, torso joint ID is '9';
    • UWA3D multi view dataset (UWA3D Multiview Activity II): 15 joints, torso joint ID is '3';

4.3 Classification

  • Run 'main' of random decision forests (Lei uses different 'main' for different datasets since different datasets should have different training and testing datasets). In Lei's implementation, half of data are used for training and the remaining half for testing.

    • MSRPairs (3D Action Pairs): msrpairsmain.m
    • MSRAction3D: msr3dmain.m
    • CAD-60: cadmain.m
    • UWA3D single view (UWA3D Activity): uwasinglemain.m
    • UWA3D multi view (UWA3D Multiview Activity II): uwamultimain.m

4.4 Visualization (i.e., confusion matrix)

  • The results of the confusion matrix will be saved in the 'Results' folder, and the confusion matrix will be displayed. Moreover, the total accuracy will appear in the workspace of the MATLAB.

4.4.1 Save figures to pdf format

  • saveTightFigure function is downloaded from online resource, which can be used to save the confusion matrix plot as pdf files. The use of this function is, for example: saveTightFigure(gcf, 'uwamultiview.pdf');

Codes for parameters evaluation, and running over all possible combinations of selecting half subjects (for training) are not provided in this repo.

For more information, please refer to my research report and our journal paper, or contact me.

5 Citations

You can cite the following papers for the use of this work:

@mastersthesis{lei_thesis_2017,
  author       = {Lei Wang}, 
  title        = {Analysis and Evaluation of {K}inect-based Action Recognition Algorithms},
  school       = {School of the Computer Science and Software Engineering, The University of Western Australia},
  year         = 2017,
  month        = {Nov}
}
@article{lei_tip_2019,
author={Lei Wang and Du Q. Huynh and Piotr Koniusz},
journal={IEEE Transactions on Image Processing},
title={A Comparative Review of Recent Kinect-Based Action Recognition Algorithms},
year={2020},
volume={29},
number={},
pages={15-28},
doi={10.1109/TIP.2019.2925285},
ISSN={1941-0042},
month={},}

Acknowledgments

I am grateful to Associate Professor Du Huynh for her valuable suggestions and discussions. We would like to thank the authors of HON4D, HOPC, LARP-SO, HPM+TM, IndRNN and ST-GCN for making their codes publicly available. We thank the ROSE Lab of Nanyang Technological University(NTU), Singapore, for making the NTU RGB+D dataset freely accessible.

Owner
Lei Wang
PhD student, Machine Learning/Computer Vision Researcher
Lei Wang
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022