TransCD: Scene Change Detection via Transformer-based Architecture

Related tags

Deep LearningTransCD
Overview

TransCD: Scene Change Detection via Transformer-based Architecture

image

Requirements

Python 3.7.0  
Pytorch 1.6.0  
Visdom 0.1.8.9  
Torchvision 0.7.0

Datasets

Pretrained Model

Pretrained models for CDNet-2014 and VL-CMU-CD are available. You can download them from the following link.

  • CDNet-2014: [Baiduyun] the password is 78cp. [GoogleDrive].
    • We uploaded six models trained on CDNet-2014 dataset, they are SViT_E1_D1_16, SViT_E1_D1_32, SViT_E4_D4_16, SViT_E4_D4_32, Res_SViT_E1_D1_16 and Res_SViT_E4_D4_16.
  • VL-CMU-CD: [Baiduyun] the password is ydzl. [GoogleDrive].
    • We uploaded four models trained on VL-CMU-CD dataset, ther are SViT_E1_D1_16, SViT_E1_D1_32, Res_SViT_E1_D1_16 and Res_SViT_E1_D1_32.

Test

Before test, please download datasets and predtrained models. Copy pretrained models to folder './dataset_name/outputs/best_weights', and run the following command:

cd TransCD_ROOT
python test.py --net_cfg 
   
     --train_cfg 
    

    
   

Use --save_changemap True to save predicted changemaps. For example:

python test.py --net_cfg SVit_E1_D1_32 --train_cfg CDNet_2014 --save_changemap True

Training

Before training, please download datasets and revise dataset path in configs.py to your path. CD TransCD_ROOT

python -m visdom.server
python train.py --net_cfg 
   
     --train_cfg 
    

    
   

For example:

python -m visdom.server
python train.py --net_cfg Res_SViT_E1_D1_16 --train_cfg VL_CMU_CD

To display training processing, copy 'http://localhost:8097' to your browser.

Citing TransCD

If you use this repository or would like to refer the paper, please use the following BibTex entry.

@inproceddings{TransCD,
title={TransCD: Scene Change Detection via Transformer-based Architecture},
author={ZHIXUE WANG, YU ZHANG*, LIN LUO, NAN WANG},
journal={Optics Express},
yera={2021},
organization={The Optical Society},
}

Reference

-Akcay, Samet, Amir Atapour-Abarghouei, and Toby P. Breckon. "Ganomaly: Semi-supervised anomaly detection via adversarial training." Asian conference on computer vision. Springer, Cham, 2018.
-Chen, Jieneng, et al. "Transunet: Transformers make strong encoders for medical image segmentation." arXiv preprint arXiv:2102.04306 (2021).
Owner
wangzhixue
wangzhixue
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022