Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

Overview

NPMs: Neural Parametric Models

Project Page | Paper | ArXiv | Video


NPMs: Neural Parametric Models for 3D Deformable Shapes
Pablo Palafox, Aljaz Bozic, Justus Thies, Matthias Niessner, Angela Dai

Citation

@article{palafox2021npms
    author        = {Palafox, Pablo and Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Thies, Justus and Nie{\ss}ner, Matthias and Dai, Angela},
    title         = {NPMs: Neural Parametric Models for 3D Deformable Shapes},
    journal       = {arXiv preprint arXiv:2104.00702},
    year          = {2021},
}

Install

You can either pull our docker image, build it yourself with the provided Dockerfile or build the project from source.

Pull Docker Image

docker pull ppalafox/npms:latest

You can now run an interactive container of the image you just built (before that, navigate to npms):

cd npms
docker run --ipc=host -it --name npms --gpus=all -v $PWD:/app -v /cluster:/cluster npms:latest bash

Build Docker Image

Run the following from within the root of this project (where Dockerfile lives) to build a docker image with all required dependencies.

docker build . -t npms

You can now run an interactive container of the image you just built (before that, navigate to npms):

cd npms
docker run --ipc=host -it --name npms --gpus=all -v $PWD:/app -v /cluster:/cluster npms:latest bash

Of course, you'll have to specify you're own paths to the volumes you'd like to mount using the -v flag.

Build from source

A linux system with cuda is required for the project.

The npms_env.yml file contains (hopefully) all necessary python dependencies for the project. To conveniently install them automatically with anaconda you can use:

conda env create -f npms_env.yml
conda activate npms
Other dependencies

We need some other dependencies. Starting from the root folder of this project, we'll do the following...

  • Compile the csrc folder:
cd csrc 
python setup.py install
cd ..
  • We need some libraries from IFNet. In particular, we need libmesh and libvoxelize from that repo. They are already placed within external. (Check the corresponding LICENSE). To build these, proceed as follows:
cd libmesh/
python setup.py build_ext --inplace
cd ../libvoxelize/
python setup.py build_ext --inplace
cd ..
chmod +x build_gaps.sh
./build_gaps.sh

       You can make sure it's built properly by running:

chmod +x gaps_is_installed.sh
./gaps_is_installed.sh

       You should get a "Ready to go!" as output.

You can now navigate back to the root folder: cd ..

Data Preparation

As an example, let's have a quick overview of what the process would look like in order to generate training data from the CAPE dataset.

Download their dataset, by registering and accepting their terms. Once you've followed their steps to download the dataset, you should have a folder named cape_release.

In npms/configs_train/config_train_HUMAN.py, set the variable ROOT to point to the folder where you want your data to live in. Then:

cd <ROOT>
mkdir data

And place cape_release within data.

Download SMPL models

Register here to get access to SMPL body models. Then, under the downloads tab, download the models. Refer to https://github.com/vchoutas/smplx#model-loading for more details.

From within the root folder of this project, run:

cd npms/body_model
mkdir smpl

And place the .pkl files you just downloaded under npms/body_model/smpl. Now change their names, such that you have something like:

body_models
│── smpl
│  │── smpl
│  │  └── SMPL_FEMALE.pkl
│  │  └── SMPL_MALE.pkl
│  │  └── SMPL_NEUTRAL.pkl

Preprocess the raw CAPE

Now let's process the raw data in order to generate training samples for our NPM.

cd npms/data_processing
python prepare_cape_data.py

Then, we normalize the preprocessed dataset, such that the meshes reside within a bounding box with boundaries bbox_min=-0.5 and bbox_max=0.5.

# We're within npms/data_processing
python normalize_dataset.py

At this point, we can generate training samples for both the shape and the pose MLP. An extra step would be required if our t-poses (<ROOT>/datasets/cape/a_t_pose/000000/mesh_normalized.ply) were not watertight. We'd need to run multiview_to_watertight_mesh.py. Since CAPE is already watertight, we don't need to worry about this.

About labels.json and labels_tpose.json

One last thing before actually generating the samples is to create some "labels" files that specify the paths to the dataset we wanna create. Under the folder ZSPLITS_HUMAN we have copied some examples.

Within it, you can find other folders containing datasets in the form of the paths to the actual data. For example, CAPE-SHAPE-TRAIN-35id, which in turn contains two files: labels_tpose and labels. They define datasets in a flexible way, by means of a list of dictionaries, where each dictionary holds the paths to a particular sample. You'll get a feeling of why we have a labels.json and labels_tpose.json by running the following sections to generate data, as well as when you dive into actually training a new NPM from scratch.

Go ahead and copy the folder ZSPLITS_HUMAN into <ROOT>/datasets, where ROOT is a path to your datasets that you can specify in npms/configs_train/config_train_HUMAN.py. If you followed along until now, within <ROOT>/datasets you should already have the preprocessed <ROOT>/datasets/cape dataset.

# Assuming you're in the root folder of the project
cp -r ZSPLITS_HUMAN <ROOT>/datasets

Note: within data_scripts you can find helpful scripts to generate your own labels.json and labels_tpose.json from a dataset. Check out the npms/data_scripts/README.md for a brief overview on these scripts.

SDF samples

Generate SDF samples around our identities in their t-pose in order to train the shape latent space.

# We're within npms/data_processing
python sample_boundary_sdf_gaps.py
Flow samples

Generate correspondences from an identity in its t-pose to its posed instances.

# We're within npms/data_processing
python sample_flow.py -sigma 0.01
python sample_flow.py -sigma 0.002

We're done with generating data for CAPE! This was just an example using CAPE, but as you've seen, the only thing you need to have is a dataset of meshes:

  • we need t-pose meshes for each identity in the dataset, and we can use multiview_to_watertight_mesh.py to make these t-pose meshes watertight, to then sample points and their SDF values.
  • for a given identity, we need to have surface correspondences between the t-pose and the posed meshes (but note that these posed meshes don't need to be watertight).

Training an NPM

Shape Latent Space

Set only_shape=True in config_train_HUMAN.py. Then, from within the npms folder, start the training:

python train.py

Pose Latent Space

Set only_shape=False in config_train_HUMAN.py. We now need to load the best checkpoint from training the shape MLP. For that, go to config_train_HUMAN.py, make sure init_from = True in its first appearance in the file, and then set this same variable to your pretrained model name later in the file:

init_from = "<model_name>"
checkpoint = <the_epoch_number_you_want_to_load>

Then, from within the npms folder, start the training:

python train.py

Once we reach convergence, you're done. You know have latent spaces of shape and pose that you can play with.

You could:

Fitting an NPM to a Monocular Depth Sequence

Code Initialization

When fitting an NPM to monocular depth sequence, it is recommended that we have a relatively good initialization of our shape and pose codes to avoid falling into local minima. To this end, we are gonna learn a shape and a pose encoder that map an input depth map to a shape and pose code, respectively.

We basically use the shape and pose codes that we've learned during training time as targets for training the shape and pose encoders. You can use prepare_labels_shape_encoder.py and prepare_labels_pose_encoder.py to generate the dataset labels for this encoder training.

You basically have to train them like so:

python encode_shape_codes.py
python encode_pose_codes.py

And regarding the data you need for training the encoder...

Data preparation: Take a look at the scripts voxelize_multiview.py to prepare the single-view voxel grids that we require to train our encoders.

Test-time Optimization

Now you can fit NPMs to an input monocular depth sequence:

python fit_npm.py -o -d HUMAN -e <EXTRA_NAME_IF_YOU_WANT>

The -o flag for optimize; the -d flag for the kind of dataset (HUMAN, MANO) and the -e flag for appending a string to the name of the current optimization run.

You'll have to take a look at config_eval_HUMAN.py and set the name of your trained model (exp_model) and its hyperparameters, as well as the dataset name dataset_name you want to evaluate on.

It's definitely not the cleanest and easiest config file, sorry for that!

Data preparation: Take a look at the scripts compute_partial_sdf_grid.py to prepare the single-view SDF grid that we assume as input at test-time.

Visualization

With the following script you can visualize your fitting. Have a look at config_viz_OURS.py and set the name of your trained model (exp_model) as well as the name of your optimization run (run_name) of test-time fitting you just computed.

python viz_all_methods.py -m NPM -d HUMAN

There are a bunch of other scripts for visualization. They're definitely not cleaned-up, but I kept them here anyways in case they might be useful for you as a starting point.

Compute metrics

python compute_errors.py -n <name_of_optimization_run>

Latent-space Interpolation

Check out the files:

Shape and Pose Transfer

Check out the files:

Pretrained Models

Download pre-trained models here

License

NPMs is relased under the MIT License. See the LICENSE file for more details.

Check the corresponding LICENSES of the projects under the external folder.

For instance, we make use of libmesh and libvoxelize, which come from IFNets. Please check their LICENSE.

We need some helper functions from LDIF. Namely, base_util.py and file_util.py, which should be already under utils. Check the license and copyright in those files.

Owner
PabloPalafox
PhD Student @ TU Munich w/ Angela Dai
PabloPalafox
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021