Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

Overview

NPMs: Neural Parametric Models

Project Page | Paper | ArXiv | Video


NPMs: Neural Parametric Models for 3D Deformable Shapes
Pablo Palafox, Aljaz Bozic, Justus Thies, Matthias Niessner, Angela Dai

Citation

@article{palafox2021npms
    author        = {Palafox, Pablo and Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Thies, Justus and Nie{\ss}ner, Matthias and Dai, Angela},
    title         = {NPMs: Neural Parametric Models for 3D Deformable Shapes},
    journal       = {arXiv preprint arXiv:2104.00702},
    year          = {2021},
}

Install

You can either pull our docker image, build it yourself with the provided Dockerfile or build the project from source.

Pull Docker Image

docker pull ppalafox/npms:latest

You can now run an interactive container of the image you just built (before that, navigate to npms):

cd npms
docker run --ipc=host -it --name npms --gpus=all -v $PWD:/app -v /cluster:/cluster npms:latest bash

Build Docker Image

Run the following from within the root of this project (where Dockerfile lives) to build a docker image with all required dependencies.

docker build . -t npms

You can now run an interactive container of the image you just built (before that, navigate to npms):

cd npms
docker run --ipc=host -it --name npms --gpus=all -v $PWD:/app -v /cluster:/cluster npms:latest bash

Of course, you'll have to specify you're own paths to the volumes you'd like to mount using the -v flag.

Build from source

A linux system with cuda is required for the project.

The npms_env.yml file contains (hopefully) all necessary python dependencies for the project. To conveniently install them automatically with anaconda you can use:

conda env create -f npms_env.yml
conda activate npms
Other dependencies

We need some other dependencies. Starting from the root folder of this project, we'll do the following...

  • Compile the csrc folder:
cd csrc 
python setup.py install
cd ..
  • We need some libraries from IFNet. In particular, we need libmesh and libvoxelize from that repo. They are already placed within external. (Check the corresponding LICENSE). To build these, proceed as follows:
cd libmesh/
python setup.py build_ext --inplace
cd ../libvoxelize/
python setup.py build_ext --inplace
cd ..
chmod +x build_gaps.sh
./build_gaps.sh

       You can make sure it's built properly by running:

chmod +x gaps_is_installed.sh
./gaps_is_installed.sh

       You should get a "Ready to go!" as output.

You can now navigate back to the root folder: cd ..

Data Preparation

As an example, let's have a quick overview of what the process would look like in order to generate training data from the CAPE dataset.

Download their dataset, by registering and accepting their terms. Once you've followed their steps to download the dataset, you should have a folder named cape_release.

In npms/configs_train/config_train_HUMAN.py, set the variable ROOT to point to the folder where you want your data to live in. Then:

cd <ROOT>
mkdir data

And place cape_release within data.

Download SMPL models

Register here to get access to SMPL body models. Then, under the downloads tab, download the models. Refer to https://github.com/vchoutas/smplx#model-loading for more details.

From within the root folder of this project, run:

cd npms/body_model
mkdir smpl

And place the .pkl files you just downloaded under npms/body_model/smpl. Now change their names, such that you have something like:

body_models
│── smpl
│  │── smpl
│  │  └── SMPL_FEMALE.pkl
│  │  └── SMPL_MALE.pkl
│  │  └── SMPL_NEUTRAL.pkl

Preprocess the raw CAPE

Now let's process the raw data in order to generate training samples for our NPM.

cd npms/data_processing
python prepare_cape_data.py

Then, we normalize the preprocessed dataset, such that the meshes reside within a bounding box with boundaries bbox_min=-0.5 and bbox_max=0.5.

# We're within npms/data_processing
python normalize_dataset.py

At this point, we can generate training samples for both the shape and the pose MLP. An extra step would be required if our t-poses (<ROOT>/datasets/cape/a_t_pose/000000/mesh_normalized.ply) were not watertight. We'd need to run multiview_to_watertight_mesh.py. Since CAPE is already watertight, we don't need to worry about this.

About labels.json and labels_tpose.json

One last thing before actually generating the samples is to create some "labels" files that specify the paths to the dataset we wanna create. Under the folder ZSPLITS_HUMAN we have copied some examples.

Within it, you can find other folders containing datasets in the form of the paths to the actual data. For example, CAPE-SHAPE-TRAIN-35id, which in turn contains two files: labels_tpose and labels. They define datasets in a flexible way, by means of a list of dictionaries, where each dictionary holds the paths to a particular sample. You'll get a feeling of why we have a labels.json and labels_tpose.json by running the following sections to generate data, as well as when you dive into actually training a new NPM from scratch.

Go ahead and copy the folder ZSPLITS_HUMAN into <ROOT>/datasets, where ROOT is a path to your datasets that you can specify in npms/configs_train/config_train_HUMAN.py. If you followed along until now, within <ROOT>/datasets you should already have the preprocessed <ROOT>/datasets/cape dataset.

# Assuming you're in the root folder of the project
cp -r ZSPLITS_HUMAN <ROOT>/datasets

Note: within data_scripts you can find helpful scripts to generate your own labels.json and labels_tpose.json from a dataset. Check out the npms/data_scripts/README.md for a brief overview on these scripts.

SDF samples

Generate SDF samples around our identities in their t-pose in order to train the shape latent space.

# We're within npms/data_processing
python sample_boundary_sdf_gaps.py
Flow samples

Generate correspondences from an identity in its t-pose to its posed instances.

# We're within npms/data_processing
python sample_flow.py -sigma 0.01
python sample_flow.py -sigma 0.002

We're done with generating data for CAPE! This was just an example using CAPE, but as you've seen, the only thing you need to have is a dataset of meshes:

  • we need t-pose meshes for each identity in the dataset, and we can use multiview_to_watertight_mesh.py to make these t-pose meshes watertight, to then sample points and their SDF values.
  • for a given identity, we need to have surface correspondences between the t-pose and the posed meshes (but note that these posed meshes don't need to be watertight).

Training an NPM

Shape Latent Space

Set only_shape=True in config_train_HUMAN.py. Then, from within the npms folder, start the training:

python train.py

Pose Latent Space

Set only_shape=False in config_train_HUMAN.py. We now need to load the best checkpoint from training the shape MLP. For that, go to config_train_HUMAN.py, make sure init_from = True in its first appearance in the file, and then set this same variable to your pretrained model name later in the file:

init_from = "<model_name>"
checkpoint = <the_epoch_number_you_want_to_load>

Then, from within the npms folder, start the training:

python train.py

Once we reach convergence, you're done. You know have latent spaces of shape and pose that you can play with.

You could:

Fitting an NPM to a Monocular Depth Sequence

Code Initialization

When fitting an NPM to monocular depth sequence, it is recommended that we have a relatively good initialization of our shape and pose codes to avoid falling into local minima. To this end, we are gonna learn a shape and a pose encoder that map an input depth map to a shape and pose code, respectively.

We basically use the shape and pose codes that we've learned during training time as targets for training the shape and pose encoders. You can use prepare_labels_shape_encoder.py and prepare_labels_pose_encoder.py to generate the dataset labels for this encoder training.

You basically have to train them like so:

python encode_shape_codes.py
python encode_pose_codes.py

And regarding the data you need for training the encoder...

Data preparation: Take a look at the scripts voxelize_multiview.py to prepare the single-view voxel grids that we require to train our encoders.

Test-time Optimization

Now you can fit NPMs to an input monocular depth sequence:

python fit_npm.py -o -d HUMAN -e <EXTRA_NAME_IF_YOU_WANT>

The -o flag for optimize; the -d flag for the kind of dataset (HUMAN, MANO) and the -e flag for appending a string to the name of the current optimization run.

You'll have to take a look at config_eval_HUMAN.py and set the name of your trained model (exp_model) and its hyperparameters, as well as the dataset name dataset_name you want to evaluate on.

It's definitely not the cleanest and easiest config file, sorry for that!

Data preparation: Take a look at the scripts compute_partial_sdf_grid.py to prepare the single-view SDF grid that we assume as input at test-time.

Visualization

With the following script you can visualize your fitting. Have a look at config_viz_OURS.py and set the name of your trained model (exp_model) as well as the name of your optimization run (run_name) of test-time fitting you just computed.

python viz_all_methods.py -m NPM -d HUMAN

There are a bunch of other scripts for visualization. They're definitely not cleaned-up, but I kept them here anyways in case they might be useful for you as a starting point.

Compute metrics

python compute_errors.py -n <name_of_optimization_run>

Latent-space Interpolation

Check out the files:

Shape and Pose Transfer

Check out the files:

Pretrained Models

Download pre-trained models here

License

NPMs is relased under the MIT License. See the LICENSE file for more details.

Check the corresponding LICENSES of the projects under the external folder.

For instance, we make use of libmesh and libvoxelize, which come from IFNets. Please check their LICENSE.

We need some helper functions from LDIF. Namely, base_util.py and file_util.py, which should be already under utils. Check the license and copyright in those files.

Owner
PabloPalafox
PhD Student @ TU Munich w/ Angela Dai
PabloPalafox
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022