Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Overview

Bridging Multi-Task Learning and Meta-Learning

Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation" by Haoxiang Wang, Han Zhao, and Bo Li from UIUC. [arXiv:2106.09017]

This repo contains our efficient implementation of multi-task learning (MTL) for few-shot learning benchmarks. Our empirical studies show that our efficient MTL implementation can match the state-of-the-art gradient-based meta-learning algorithms, while enjoying an order of magnitude less training time.

If you find this repo useful for your research, please consider citing our paper

@inproceedings{wang2021bridging,
  title={Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation},
  author={Wang, Haoxiang and Zhao, Han and Li, Bo},
  booktitle={International Conference on Machine Learning},
  year={2021},
  organization={PMLR}
}

Installation

This repo was tested with Ubuntu 18.04, Python 3.7 & 3.8 (Anaconda version), Pytorch 1.8 with CUDA 10 & 11.

Required Packages

  • Common Packages (covered by Anaconda): numpy, scikit-learn, tqdm, etc.
  • Pytorch packages: pytorch, torchvision, pytorch-lightning (a PyTorch wrapper), pytorch-optimizer (a collection of optimizers for Pytorch)
  • Other packages: learn2learn (a meta-learning codebase), WandB (a smart logger to visualize and track machine learning experiments)

Installation Tutorial:

  1. Install the Conda package manager with Anaconda following this webpage.

  2. In the Conda environment, install PyTorch and TorchVision following the official tutorial.

  3. In the Conda environment, install all other packages using the command line

    pip install pytorch-lightning==1.0.2 torch_optimizer wandb 
    
    • Currently, learn2learn is not compatible with the latest version of pytorch-lightning.
  4. Install the latest version of learn2learn by downloading its GitHub repo to a local folder

    git clone https://github.com/learnables/learn2learn.git && cd learn2learn && pip install -e .
    

Code

This repo is mainly built upon the learn2learn package (especially its pytorch-lightning version).

  • train.py: The script to train multi-task learning (and other meta-learning algorithms) on few-shot image classification benchmarks. This code is built upon this example provided by learn2learn.
  • lightning_episodic_module.py: This contains a base class LightningEpisodicModule for meta-learning. Notice that this class is built upon this implementation in learn2learn, and we add more choices of test methods, optimizers, and learning rate schedulers to this class.
  • lightning_mtl.py: This contains a class LightningMTL, which is our implementation of multi-task learning (MTL). Notice that this is a child class of LightningEpisodicModule, and it only includes the training code. Please refer to lightning_episodic_module.py for the optimizer setup and the test/validation evaluation code (e.g., fine-tuning the last layer by L2-regularized logistic regression)
  • models/: This folder is adopted from the repo RFS by Yue Wang, and it contains the implementation of multiple variants of ResNet. For a fair comparison with previous few-shot learning works, we conducted all experiments with the ResNet-12 architecture. However, one can try other architectures (e.g., ResNet-50 or WideResNet-28) to obtain possibly better performance.
  • datasets/: This is adapted from this learn2learn folder, which contains data loaders for few-shot image classification datasets. We only made a slight modification to two data loaders (mini-ImageNet and tiered-ImageNet), so we only present them here. Other data-loaders can be directly loaded from the learn2learn package.
  • benchmarks/: This is adapted from this learn2learn folder, which provides wrappers for data loaders (e.g., few-shot task construction, data augmentation). We implemented the data augmentation introduced in MetaOptNet (named as Lee19 in our code), and added some functions to accommodate the training of multi-task learning.

Logging and Checkpointing

  • Logging: We use the WandB logger, which can automatically upload all training and evaluation logs to the cloud. You need to register a free WandB account first and log in to it on your workstation/server following this tutorial. You can also turn off the sync function to make the logger purely offline. Notice that the logger we used is wrapped by Pytorch-Lightning (see this doc), and you can easily switch it to other loggers supported by Pytorch-Lighting (e.g., TensorBoard, MLflow, Comet, Neptune), since the logging functions we use in this repo is universal to all Pytorch-Lightning loggers. See this tutorial for details.
  • Checkpointing: We adopt the checkpointing functions provided by Pytorch-Lightning, which can automatically save checkpoints at the end of every epoch. Our implementation only saves the best epoch checkpoint (i.e., the epoch with the highest validation accuracy) and the last epoch checkpoint, so the disk usage of checkpoints is constant. Pytorch-Lightning can also help you load checkpoints easily.

Args and Flags

Below, we introduce multiple arguments and flags you might want to modify.

Notice that the argparser does not only parse the arguments in train.py. In addition, it also parses arguments in 'lightning_episodic_module.py' and lightning_mtl.py. Furthermore, some arguments are embedded in pytorch-lightning (e.g., --max_epochs).

  • --dataset: Currently, we support four datasets, ['mini-imagenet', 'tiered-imagenet', 'cifarfs', 'fc100']
  • --algorithm: We only provide the implementation of multi-task learning in this repo. However, you can also try other meta-learning algorithms provided by this learn2learn folder.
    • Note: in the empirical comparison of our paper, we take the officially reported performance in the original papers of these meta-learning methods (e.g., MAML, MetaOptNet), instead of running this script with the learn2learn implementation.
  • --root: The root directory that saves datasets. The default is ~/data.
  • --log_dir: The directory that saves logs and checkpoints. The defult is ~/wandb_logs
  • --gpu: The index of the GPU you want to use. Currently, our code only supports single-GPU training.
  • --norm_train_features: Normalize features (i.e., last hidden layer outputs) during training. We find this is useful for all datasets except for FC100.
  • --test_method: The default is l2, which is the L2-regularized logistic regression we use for the fine-tuning adaptation during the test phase.
  • --optim: The optimizer to use (default is 'radam', i.e., RAdam). The choice list is ['sgd', 'sgdp', 'sgdw', 'adam', 'adamw', 'adamax', 'radam', 'adabound', 'adamp']. These optimizers are adopted from PyTorch and pytorch-optimizer.
  • --scheduler: The learning rate scheduler to use (default is 'plateau', i.e., ReduceLROnPlateau). The other choice is 'step', which is the StepLR scheduler.
  • --meta_batch_size: The number of training tasks in a batch during (meta-)training.
  • --train_queries:
  • --test_shots: The number of shots during the test.
    • We only consider 5-way classification in our experiments. If you want to vary it, you can change the flags --train_ways and --test_ways.
    • Our implementation of multi-task learning does not care about the number of shots during training, since it does not split a task into query and support data. Thus --train_shots is noneffective for multi-task learning. But it is useful to other meta-learning algorithms.
  • --test_queries: The number of query samples per class in each test task (default is 30).
    • In our experiments, we adopt test_queries = 50. But this has a large GPU memory consumption, e.g., it will exceed 11GB (the limit of 1080ti and 2080ti) when running on mini-ImageNet. Thus, we set it as 30 here instead. In principle, larger test_queries leads to a more accurate estimation of the test accuracy. However, if you cannot use a large value of test_queries, you can also enlarge the following final_test_epoch_length to obtain a more accurate test accuracy estimation.
  • --final_test_epoch_length: The number of tasks for test evaluation at the end of training. Default is 2000.
  • --no_log: Running the script with this flag will turn off the logging and checkpointing. Notice that in this mode, pytorch-lightning will automatically write some checkpoint files to ./checkpoints/.
  • --max_epochs: the number of maximum training epochs.

Running

To replicate empirical results of multi-task learning shown in the paper, please run the following commands with your preferred root directory to save datasets and the GPU to use. The code can automatically download datasets to the root directory you specified.

In the following demo, we consider the root directory as /data and the GPU index as 0.

mini-ImageNet

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --meta_batch_size 2 --test_shots 5 --algorithm mtl --dataset mini-imagenet
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features  --test_shots 1 --algorithm mtl --dataset mini-imagenet
    

tiered-ImageNet

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 35 --meta_batch_size 1 --test_shots 5 --algorithm mtl --dataset tiered-imagenet
    
    • For multi-task learning, there is no query-support split during training (i.e., one can think that we "merge" query and support data for multi-task learning). Then, given the default train_queries = 5, setting --train_queries 35 makes the number of samples per class in each training task to be 40.
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 35 --meta_batch_size 2 --test_shots 1 --algorithm mtl --dataset tiered-imagenet
    

CIFAR-FS

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --test_shots 5 --algorithm mtl --dataset cifarfs
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 15 --meta_batch_size 2 --test_shots 1 --algorithm mtl --dataset cifarfs
    

FC100

  • 5-shot

    python train.py --gpu 0 --root ~/data --test_shots 5 --algorithm mtl --dataset fc100
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --train_queries 4 --train_shots 1 --meta_batch_size 1 --test_shots 1 --algorithm mtl --dataset fc100
    
    • Setting --train_queries 4 --train_shots 1 reduces the number of samples per class in each training task to be 4+1=5 for multi-task learning, since it does not have the query-support splitting.

Results

Here is an empirical comparison of our implementation of multi-task learning against MetaOptNet, a state-of-the-art gradient-based meta-learning algorithm. For more results, please refer to our paper.

Benchmarking

Efficiency comparison

We benchmarked the training cost of Multi-Task Learning and MetaOptNet on AWS-EC2 P3 instances. See our papers for more details.

  • mini-ImageNet (5-way 5-shot)
Test Accuracy GPU Hours
MetaOptNet 78.63% 85.6 hrs
Multi-Task Learning 77.72% 3.7 hrs
  • tiered-ImageNet (5-way 5-shot)

    efficiency-tiered-imagenet
    • We vary the meta_batch_size and the number of epochs and finally obtain this plot. Each dot of MTL represents the result of one configuration. With smaller meta_batch_size and the number of epochs, MTL can be 11x faster than MetaOptNet while achieving the same performance (81.55% vs. 81.56%).

Contact Information

Please contact Haoxiang Wang ([email protected]) for any questions regarding this repo.

If you have questions regarding the learn2learn codebase, please consider joining the learn2learn slack to ask the authors and contributors of learn2learn directly.

Acknowledgments

In this repo, we adopt some code from the following codebases, and we sincerely thank their authors:

  • learn2learn: This repo is built on the learn2learn codebase (more precisely, the pytorch-lightning version of learn2learn), and the implemented multi-task learning code will be pushed to learn2learn in the future. Stay tuned!
  • RFS: We adopt the implementation of neural net architectures (e.g., CNNs, ResNets) from the RFS codebase (i.e., we copied their models/ to the './models' in this repo).
Owner
AI Secure
UIUC Secure Learning Lab
AI Secure
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022