Topic Inference with Zeroshot models

Overview

zeroshot_topics

Table of Contents

Installation

zeroshot_topics is distributed on PyPI as a universal wheel and is available on Linux/macOS and Windows and supports Python 3.7+ and PyPy.

$ pip install zeroshot_topics

Usage

from zeroshot_topics import ZeroShotTopicFinder
zsmodel = ZeroShotTopicFinder()
text = """can you tell me anything else okay great tell me everything you know about George_Washington.
he was the first president he was well he I'm trying to well he fought in the Civil_War he was a general
in the Civil_War and chopped down his father's cherry tree when he was a little boy he that's it."""
zsmodel.find_topic(text)

License

zeroshot_topics is distributed under the terms of

You might also like...
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

LightSeq: A High-Performance Inference Library for Sequence Processing and Generation
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transformer, etc. It is therefore best useful for Machine Translation, Text Generation, Dialog, Language Modelling, and other related tasks using these models.

Spert NLP Relation Extraction API deployed with torchserve for inference

SpERT torchserve Spert_torchserve is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer API deployed with pytorch/serve.

A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Comments
  • Error when I run the sample code

    Error when I run the sample code

    I get this when I try to run the sample code:

    Traceback (most recent call last): File "zerotopics.py", line 1, in from zeroshot_topics import ZeroShotTopicFinder File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/init.py", line 3, in from .zeroshot_tm import ZeroShotTopicFinder File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/zeroshot_tm.py", line 3, in from .utils import load_zeroshot_model File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/utils.py", line 6, in def load_zeroshot_model(model_name="valhalla/distilbart-mnli-12-6"): File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/functools.py", line 490, in lru_cache raise TypeError('Expected maxsize to be an integer or None') TypeError: Expected maxsize to be an integer or None

    Specifics: Python version 3.7.9

    pip freeze gives (yeh this virtualenv is getting big :):

    absl-py==1.0.0 aiohttp==3.8.1 aiosignal==1.2.0 alabaster==0.7.12 aniso8601==9.0.1 antlr4-python3-runtime==4.8 appnope @ file:///opt/concourse/worker/volumes/live/4f734db2-9ca8-4d8b-5b29-6ca15b4b4772/volume/appnope_1606859466979/work async-timeout==4.0.2 asynctest==0.13.0 attrs==20.3.0 Babel==2.9.1 backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work bertopic==0.6.0 blis @ file:///opt/concourse/worker/volumes/live/cd6a6bea-d063-4b62-4c10-fcc89b17d0ac/volume/cython-blis_1594246851083/work boto3==1.17.86 botocore==1.20.86 brotlipy==0.7.0 cachetools==4.2.1 catalogue==2.0.6 certifi==2020.12.5 cffi @ file:///opt/concourse/worker/volumes/live/2aa8abfe-8b8d-4889-78d9-837b74c3cd64/volume/cffi_1606255119410/work chardet @ file:///opt/concourse/worker/volumes/live/9efbf151-b45b-463d-6340-a5c399bf00b7/volume/chardet_1607706825988/work charset-normalizer==2.0.9 click==7.1.2 colorama==0.4.4 coloredlogs==15.0.1 commonmark==0.9.1 cryptography @ file:///opt/concourse/worker/volumes/live/41c3d62a-f1f8-46ce-414a-9adaf4ea7d96/volume/cryptography_1607636752064/work cycler==0.10.0 cymem @ file:///opt/concourse/worker/volumes/live/3e8d7428-f57d-4000-44e7-34ac8a744f13/volume/cymem_1605062299053/work Cython==0.29.23 dataclasses==0.6 datasets==1.17.0 decorator @ file:///home/ktietz/src/ci/decorator_1611930055503/work dill==0.3.4 docformatter==1.4 docutils==0.15.2 emoji==1.6.1 en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.2.0/en_core_web_lg-3.2.0-py3-none-any.whl en-core-web-md @ https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.2.0/en_core_web_md-3.2.0-py3-none-any.whl en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.2.0/en_core_web_sm-3.2.0-py3-none-any.whl en-core-web-trf @ https://github.com/explosion/spacy-models/releases/download/en_core_web_trf-3.2.0/en_core_web_trf-3.2.0-py3-none-any.whl et-xmlfile==1.1.0 fairscale==0.4.4 Faker==8.16.0 fasttext @ file:///Users/scharlesworth/fastText-0.9.2 filelock==3.0.12 flake8==4.0.1 flake8-bugbear==21.11.29 Flask==2.0.2 Flask-Cors==3.0.10 Flask-RESTful==0.3.9 frozenlist==1.2.0 fsspec==2021.11.1 future==0.18.2 gitdb==4.0.9 gitdb2==4.0.2 GitPython==3.1.24 google-api-core==1.26.2 google-api-python-client==2.0.2 google-auth==1.28.0 google-auth-httplib2==0.1.0 google-auth-oauthlib==0.4.6 googleapis-common-protos==1.53.0 grpcio==1.43.0 hdbscan==0.8.27 httplib2==0.19.0 huggingface-hub==0.2.1 humanfriendly==10.0 hydra-core==1.1.1 idna @ file:///tmp/build/80754af9/idna_1593446292537/work imagesize==1.3.0 importlib-metadata @ file:///tmp/build/80754af9/importlib-metadata_1602276842396/work importlib-resources==5.4.0 iniconfig==1.1.1 iopath==0.1.9 ipykernel @ file:///opt/concourse/worker/volumes/live/73e8766c-12c3-4f76-62a6-3dea9a7da5b7/volume/ipykernel_1596206701501/work/dist/ipykernel-5.3.4-py3-none-any.whl ipython @ file:///opt/concourse/worker/volumes/live/ac685347-76d6-4904-4b88-886c6a434f22/volume/ipython_1614616430264/work ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work itsdangerous==2.0.1 jedi @ file:///opt/concourse/worker/volumes/live/5006b7b5-a924-4788-6cfe-ae05d8be8830/volume/jedi_1606932947370/work Jinja2==3.0.1 jmespath==0.10.0 joblib==1.0.1 jsonlines==3.0.0 jsonschema==3.0.2 jupyter-client @ file:///tmp/build/80754af9/jupyter_client_1601311786391/work jupyter-core @ file:///opt/concourse/worker/volumes/live/a699b83f-e941-4170-5136-bf87e3f37756/volume/jupyter_core_1612213304212/work keybert==0.5.0 kiwisolver==1.3.1 langcodes==3.3.0 llvmlite==0.36.0 loguru==0.5.3 Markdown==3.3.4 markdown-it-py==0.5.8 MarkupSafe==2.0.1 matplotlib==3.4.0 mccabe==0.6.1 mkl-fft==1.2.0 mkl-random==1.1.1 mkl-service==2.3.0 mock==4.0.3 multidict==5.2.0 multiprocess==0.70.12.2 murmurhash @ file:///opt/concourse/worker/volumes/live/9a0582f9-9097-4dab-6d7a-fcf62b4968ae/volume/murmurhash_1607456116622/work myst-parser==0.12.10 nltk==3.6.5 numba==0.53.1 numpy==1.20.2 oauthlib==3.1.1 omegaconf==2.1.1 openai==0.6.3 openpyxl==3.0.9 packaging==20.9 pandas==1.2.1 parlai==1.5.1 parquet==1.3.1 parso==0.7.0 pathy==0.6.1 pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work Pillow==8.2.0 plac @ file:///opt/concourse/worker/volumes/live/a94b6881-2d18-4055-5a3c-f24036f05ef6/volume/plac_1594259982880/work pluggy==1.0.0 ply==3.11 portalocker==2.3.2 praw==7.1.0 prawcore==1.5.0 preshed @ file:///opt/concourse/worker/volumes/live/952fa955-acc7-4aa0-6766-86f802ea8ef1/volume/preshed_1608233410312/work prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1616415428029/work protobuf==3.15.6 ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl py==1.11.0 py-gfm==1.0.2 py-rouge==1.1 py4j==0.10.7 pyarrow==6.0.1 pyasn1==0.4.8 pyasn1-modules==0.2.8 pybind11==2.6.1 pycodestyle==2.8.0 pycparser @ file:///tmp/build/80754af9/pycparser_1594388511720/work pydantic==1.8.2 pyee==8.2.2 pyflakes==2.4.0 Pygments @ file:///tmp/build/80754af9/pygments_1615143339740/work PyJWT==2.3.0 pynndescent==0.5.2 pyodbc==4.0.32 pyOpenSSL @ file:///tmp/build/80754af9/pyopenssl_1608057966937/work pyparsing==2.4.7 pyrsistent @ file:///opt/concourse/worker/volumes/live/656e0c1b-ef87-4251-4a51-1290b2351993/volume/pyrsistent_1600141745371/work PySocks @ file:///opt/concourse/worker/volumes/live/ef943889-94fc-4539-798d-461c60b77804/volume/pysocks_1605305801690/work pytest==6.2.5 pytest-datadir==1.3.1 pytest-regressions==2.2.0 python-dateutil @ file:///home/ktietz/src/ci/python-dateutil_1611928101742/work python-slugify==5.0.2 pytorch-transformers==1.2.0 pytz==2020.5 PyYAML==6.0 pyzmq==20.0.0 regex==2021.11.10 requests @ file:///tmp/build/80754af9/requests_1608241421344/work requests-mock==1.9.3 requests-oauthlib==1.3.0 requests-toolbelt==0.9.1 rich==10.16.2 rsa==4.7.2 s3transfer==0.4.2 sacremoses==0.0.44 scikit-learn==0.24.1 scipy==1.6.2 seaborn==0.11.1 sentence-transformers==1.0.4 sentencepiece==0.1.91 seqeval==0.0.5 sh==1.14.2 six @ file:///opt/concourse/worker/volumes/live/f983ba11-c9fe-4dff-7ce7-d89b95b09771/volume/six_1605205318156/work sklearn==0.0 slack-bolt==1.11.1 slack-sdk==3.13.0 slackclient==2.9.3 slackeventsapi==3.0.1 smart-open==5.2.1 smmap==5.0.0 snowballstemmer==2.2.0 spacy==3.2.0 spacy-alignments==0.8.4 spacy-legacy==3.0.8 spacy-loggers==1.0.1 spacy-sentence-bert==0.1.2 spacy-transformers==1.1.2 spark-nlp==3.0.2 Sphinx==2.2.2 sphinx-autodoc-typehints==1.10.3 sphinx-rtd-theme==1.0.0 sphinxcontrib-applehelp==1.0.2 sphinxcontrib-devhelp==1.0.2 sphinxcontrib-htmlhelp==2.0.0 sphinxcontrib-jsmath==1.0.1 sphinxcontrib-qthelp==1.0.3 sphinxcontrib-serializinghtml==1.1.5 srsly==2.4.2 subword-nmt==0.3.8 tensorboard==2.7.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.0 tensorboardX==2.4.1 text-unidecode==1.3 thinc==8.0.13 threadpoolctl==2.1.0 thriftpy2==0.4.14 tokenizers==0.10.2 toml==0.10.2 torch==1.10.1 torchtext==0.11.1 tornado @ file:///opt/concourse/worker/volumes/live/d531d395-893c-4ca1-6a5f-717b318eb08c/volume/tornado_1606942307627/work tqdm==4.62.3 traitlets @ file:///home/ktietz/src/ci/traitlets_1611929699868/work transformers==4.11.0 typer==0.4.0 typing-extensions==3.7.4.3 umap-learn==0.5.1 Unidecode==1.3.2 untokenize==0.1.1 update-checker==0.18.0 uritemplate==3.0.1 urllib3==1.26.7 wasabi==0.8.2 wcwidth @ file:///tmp/build/80754af9/wcwidth_1593447189090/work webexteamsbot==0.1.4.2 webexteamssdk==1.6 websocket-client==0.57.0 websocket-server==0.6.4 Werkzeug==2.0.1 xlrd==2.0.1 xxhash==2.0.2 yarl==1.7.2 zeroshot-topics==0.1.0 zipp @ file:///tmp/build/80754af9/zipp_1604001098328/work

    opened by sdcharle 1
  • Add size to lru_cache

    Add size to lru_cache

    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/__init__.py in <module>()
          1 __version__ = '0.1.0'
          2 
    ----> 3 from .zeroshot_tm import ZeroShotTopicFinder
    
    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/zeroshot_tm.py in <module>()
          1 import attr
          2 from keybert import KeyBERT
    ----> 3 from .utils import load_zeroshot_model
          4 from nltk.corpus import wordnet as wn
          5 
    
    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/utils.py in <module>()
          4 
          5 @lru_cache
    ----> 6 def load_zeroshot_model(model_name="valhalla/distilbart-mnli-12-6"):
          7     classifier = pipeline("zero-shot-classification", model=model_name)
          8     return classifier
    
    /usr/lib/python3.7/functools.py in lru_cache(maxsize, typed)
        488             maxsize = 0
        489     elif maxsize is not None:
    --> 490         raise TypeError('Expected maxsize to be an integer or None')
        491 
        492     def decorating_function(user_function):
    
    TypeError: Expected maxsize to be an integer or None
    

    I assume that you have to provide, maxsize parameter to lru_cache. Worked for me, when I provided the parameter.

    opened by gsasikiran 6
Releases(v.0.0.1)
Owner
Rita Anjana
ML engineer
Rita Anjana
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Repository of the Code to Chatbots, developed in Python

Description In this repository you will find the Code to my Chatbots, developed in Python. I'll explain the structure of this Repository later. Requir

Li-am K. 0 Oct 25, 2022
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022