Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Overview

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference

Source code for RCDG model in AAAI20 Generating Persona Consistent Dialogues by Exploiting Natural Language Inference, a natural language inference (NLI) enhanced reinforcement learning dialogue model.

Requirements:

The code is tested under the following env:

  • Python 3.6
  • Pytorch 0.3.1

Install with conda: conda install pytorch==0.3.1 torchvision cudatoolkit=7.5 -c pytorch

This released code has been tested on a Titan-XP 12G GPU.

Data

We have provided some data samples in ./data to show the format. For downloading the full datasets, please refer to the following papers:

How to Run:

For a easier way to run the code, here the NLI model is GRU+MLP, i.e. RCDG_base, and we remove the time-consuming MC search.

Here are a few steps to run this code:

0. Prepare Data

python preprocess.py -train_src data/src-train.txt -train_tgt data/tgt-train.txt -train_per data/per-train.txt -valid_src data/src-val.txt -valid_tgt data/tgt-val.txt -valid_per data/per-val.txt -train_nli data/nli-train.txt -valid_nli data/nli-valid.txt -save_data data/nli_persona -src_vocab_size 18300 -tgt_vocab_size 18300 -share_vocab

And as introduced in the paper, there are different training stages:

1. NLI model Pretrain

cd NLI_pretrain/

python train.py -data ../data/nli_persona -batch_size 32 -save_model saved_model/consistent_dialogue -rnn_size 500 -word_vec_size 300 -dropout 0.2 -epochs 5 -learning_rate_decay 1 -gpu 0

And you should see something like:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 1
31432
Epoch  1, nli_step     1/ 4108; nli: 0.28125
Epoch  1, nli_step    11/ 4108; nli: 0.38125
Epoch  1, nli_step    21/ 4108; nli: 0.43438
Epoch  1, nli_step    31/ 4108; nli: 0.48125
Epoch  1, nli_step    41/ 4108; nli: 0.53750
Epoch  1, nli_step    51/ 4108; nli: 0.56250
Epoch  1, nli_step    61/ 4108; nli: 0.49062
...

2. Generator G Pretrain

cd ../G_pretrain/

python train.py -data ../data/nli_persona -batch_size 32 -rnn_size 500 -word_vec_size 300  -dropout 0.2 -epochs 15 -g_optim adam -g_learning_rate 1e-3 -learning_rate_decay 1 -train_from PATH_TO_PRETRAINED_NLI -gpu 0

Here the PATH_TO_PRETRAINED_NLI should be replaced by your model path, e.g., ../NLI_pretrain/saved_model/consistent_dialogue_e3.pt.

If , you should see the ppl comes down during training, which means the dialogue model is in training:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  4, teacher_force     1/ 4108; acc:   0.00; ppl: 18619.76; 125 src tok/s; 162 tgt tok/s;      3 s elapsed
Epoch  4, teacher_force    11/ 4108; acc:   9.69; ppl: 2816.01; 4159 src tok/s; 5468 tgt tok/s;      3 s elapsed
Epoch  4, teacher_force    21/ 4108; acc:   9.78; ppl: 550.46; 5532 src tok/s; 6116 tgt tok/s;      4 s elapsed
Epoch  4, teacher_force    31/ 4108; acc:  11.15; ppl: 383.06; 5810 src tok/s; 6263 tgt tok/s;      5 s elapsed
...
Epoch  4, teacher_force   941/ 4108; acc:  25.40; ppl:  90.18; 5993 src tok/s; 6645 tgt tok/s;     63 s elapsed
Epoch  4, teacher_force   951/ 4108; acc:  27.49; ppl:  77.07; 5861 src tok/s; 6479 tgt tok/s;     64 s elapsed
Epoch  4, teacher_force   961/ 4108; acc:  26.24; ppl:  83.17; 5473 src tok/s; 6443 tgt tok/s;     64 s elapsed
Epoch  4, teacher_force   971/ 4108; acc:  24.33; ppl:  97.14; 5614 src tok/s; 6685 tgt tok/s;     65 s elapsed
...

3. Discriminator D Pretrain

cd ../D_pretrain/

python train.py -epochs 20 -d_optim adam -d_learning_rate 1e-4 -data ../data/nli_persona -train_from PATH_TO_PRETRAINED_G -batch_size 32 -learning_rate_decay 0.99 -gpu 0

Similarly, replace PATH_TO_PRETRAINED_G with the G Pretrain model path.

The acc of D will be displayed during training:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  5, d_step     1/ 4108; d: 0.49587
Epoch  5, d_step    11/ 4108; d: 0.51580
Epoch  5, d_step    21/ 4108; d: 0.49853
Epoch  5, d_step    31/ 4108; d: 0.55248
Epoch  5, d_step    41/ 4108; d: 0.55168
...

4. Reinforcement Training

cd ../reinforcement_train/

python train.py -epochs 30 -batch_size 32 -d_learning_rate 1e-4 -g_learning_rate 1e-4 -learning_rate_decay 0.9 -data ../data/nli_persona -train_from PATH_TO_PRETRAINED_D -gpu 0

Remember to replace PATH_TO_PRETRAINED_D with the D Pretrain model path.

Note that all the -epochs are global among all stages, if you want to tune this parameter. Actually, there are 30 - 20 = 10 training epochs in this Reinforcement Training stage if the D Pretrain model was trained 20 epochs in total.

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  7, self_sample     1/ 4108; acc:   2.12; ppl:   0.28; 298 src tok/s; 234 tgt tok/s;      2 s elapsed
Epoch  7, teacher_force    11/ 4108; acc:   3.32; ppl:   0.53; 2519 src tok/s; 2772 tgt tok/s;      3 s elapsed
Epoch  7, d_step    21/ 4108; d: 0.98896
Epoch  7, d_step    31/ 4108; d: 0.99906
Epoch  7, self_sample    41/ 4108; acc:   0.00; ppl:   0.27; 1769 src tok/s; 260 tgt tok/s;      7 s elapsed
Epoch  7, teacher_force    51/ 4108; acc:   2.83; ppl:   0.43; 2368 src tok/s; 2910 tgt tok/s;      9 s elapsed
Epoch  7, d_step    61/ 4108; d: 0.75311
Epoch  7, d_step    71/ 4108; d: 0.83919
Epoch  7, self_sample    81/ 4108; acc:   6.20; ppl:   0.33; 1791 src tok/s; 232 tgt tok/s;     12 s elapsed
...

5. Testing Trained Model

Now we have a trained dialogue model, we can test by:

Still in ./reinforcement_train/

python predict.py -model TRAINED_MODEL_PATH  -src ../data/src-val.txt -tgt ../data/tgt-val.txt -replace_unk -verbose -output ./results.txt -per ../data/per-val.txt -nli nli-val.txt -gpu 0

MISC

  • Initializing Model Seems Slow?

    This is a legacy problem due to pytorch < 0.4, not brought by this project. And the training efficiency will not be affected.

  • BibTex

     @article{Song_RCDG_2020,
     	title={Generating Persona Consistent Dialogues by Exploiting Natural Language Inference},
     	volume={34},
     	DOI={10.1609/aaai.v34i05.6417},
     	number={05},
     	journal={Proceedings of the AAAI Conference on Artificial Intelligence},
     	author={Song, Haoyu and Zhang, Wei-Nan and Hu, Jingwen and Liu, Ting},
     	year={2020},
     	month={Apr.},
     	pages={8878-8885}
     	}
    
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
Converts python code into c++ by using OpenAI CODEX.

🦾 codex_py2cpp 🤖 OpenAI Codex Python to C++ Code Generator Your Python Code is too slow? 🐌 You want to speed it up but forgot how to code in C++? ⌨

Alexander 423 Jan 01, 2023
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022