In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

Overview

模式识别大作业——人脸检测与识别平台

本项目是一个简易的人脸检测识别平台,提供了人脸信息录入人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,前后端交互采用 flask。

0 环境依赖

flask==2.0.1
werkzeug==2.0.1
torch==1.10.1
torchvision==0.11.1
pillow==8.2.0

1 文件结构

image-20211121230548707

MTCNN_FaceNet:人脸检测算法接口

simplified:人脸识别算法接口

static:静态资源文件夹(包含数据库)

templates:前端Html框架

app.py:前后端交互flask框架

2 人脸识别算法——facenet

  • 一次性导入数据库:使用 face_in.py,请将数据库中每个人组织成单个文件夹的形式,如图

    image-20211121230548707

    • 格式为 python face_in.py -i -d
    • 样例输入:python face_in.py -i In_data -d dataset.json
    • 样例输出:在当前工作目录下生成(default)名为"dataset.json"的文件,即为数据库
    • 若为直接调用函数的话,传入包含上面两种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>} 的参数
  • 添加单个人像:使用 face_append.py,格式为 python face_append.py -i -n -d

    • 样例输入:python face_append.py -i In_data/acatsa/acatsa.1.jpg -n acatsa -d dataset.json
    • 样例输出:修改指定的 dataset.json,向其中添加新的人脸数据
    • 若为直接调用函数的话,传入包含上面三种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>, 'name':<>} 的参数
  • 从数据库中判别人脸:使用 classify_func.py,格式为 python classify_func.py -i -d

    • 样例输入: python classify_func.py -i In_data/acatsa/acatsa.1.jpg -d dataset.json
    • 样例输出:'acatsa'
    • 若为直接调用函数的话,传入包含上面三种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>} 的参数
  • 剪切人脸 和 输出特征向量的 接口,见 interface.py 中的 mtcnn_single() 和 embedding_single() 函数

    • mtcnn_single()
      • 输入:字典,{'image_path':<>, 'save_path':< default:None >}
      • 输出:返回剪切后的图片,同时在 save_path 保存剪切后的图片
    • embedding_single()
      • 输入:字典, {'image_path':<>}
      • 输出:返回编码向量
  • 一键将图片库中人脸进行 mtcnn 剪裁,见 mtcnn_trans() 函数

    • 输入:字典,{'image_path':<>}

    • 输出:无返回值,剪裁后替换原有图片位置

    • 注意:需要图片库的组织形式如本文开头 face_in.py 的要求那样见 mtcnn_trans() 函数

  • classify_test() 函数

    • 输入:字典,{'img_path':<>, 'dataset_path':<>, 'origin_data':<>}
      • img_path,输入图片的路径位置
      • dataset_path,之前保存的数据 json
      • origin_data,图片的保存位置,即各个人脸的总保存位置
      • image-20211225172640828
      • 就像上面这样的话,origin_data = 'In_data'
    • 输出:
      • 若找到匹配的人脸。返回路径,示例:'In_data/acatsa/acatsa_1.jpg'
      • 若未找到,返回字符串 'no matched people'

3 人脸检测算法——mtcnn

4 平台使用

本平台采用flask框架搭建,运行时,在flask_FC文件夹下打开终端,运行如下指令:

python -m flask run

在浏览器中输入网址 http://127.0.0.1:5000/

前端设置了两个接口,分别进行信息录入人脸截图识别。将新录入的人脸图片传入后端,可利用mtcnn算法进行人脸检测,在数据库中加入该用户的人脸信息;将视频流截图后的图片传入后端,可利用facenet算法进行人脸识别,在后台数据库中信息匹配,返回识别成功或错误信息。

image-20211225172640828

4.1 人脸信息录入

form表单将文件流传入后端 —— mtcnn接口检测人脸 —— DataBase中更新图片信息 —— dataset.json中更新编码信息 —— 检测人脸图片返回前端

aaa.html

">
<form action="/" id="uploadForm" method="post" enctype="multipart/form-data" >
	<button class="btn btn-danger" type="submit" >
      <h3>Enter Photo to experienceh3> 
    button>
	<input type="file" name="photo">
form>

app.py

@app.route('/', methods=['GET', 'POST'])
def upinfo():
    if request.method == 'POST':
        if request.files.get('photo'):
            # 创建文件夹,保存录入图片
            photo = request.files.get('photo')
            basepath = os.path.dirname(__file__)
            filename = secure_filename(photo.filename)
            uploadpath = os.path.join(basepath, 'static/DataBase', filename[:-4], filename)
            path = os.path.join(basepath, 'static/DataBase', filename[:-4])
            if not path:
                os.makedirs(path)

            Reshape = transforms.Resize((160, 160))
            trans = transforms.Compose([Reshape])
            img = trans(tojpg(Image.open(photo)))
            save_path = uploadpath
            newphoto = mtcnn_single(img, save_path=save_path)

            # 更新dataset.json
            args = {'image_path': uploadpath, "dataset_path": 'static/face_dataset.json', 'name': filename[:-4]}
            face_append(args)
            return render_template('aaa.html', output='DataBase/' + filename[:-4] + '/' + filename)

    return render_template('aaa.html')

4.2 视频流截图检测

前端视频流截图传入后端 —— facenet接口识别人脸 —— 后端数据库匹配 —— 返回数据库已录入图片(匹配成功)/返回失败信息

aaa.html

">
<video id="myVideo" autoplay>video>
			<script>

				let v = document.getElementById("myVideo");

				//create a canvas to grab an image for upload
				let imageCanvas = document.createElement('canvas');
				let imageCtx = imageCanvas.getContext("2d");

				//Add file blob to a form and post
				function postFile(file) {
					let formdata = new FormData();
					formdata.append("image", file);
					let xhr = new XMLHttpRequest();
					xhr.open('POST', 'http://localhost:5000/', true);
					xhr.onload = function () {
						if (this.status === 200){
							var path = JSON.parse(this.response)['path']
							console.log(this.response['path']);
							$('#img').attr('src',path);
						}
						else
							console.error(xhr);
					};
					xhr.send(formdata);
				}

				//Get the image from the canvas
				function sendImagefromCanvas() {

					//Make sure the canvas is set to the current video size
					imageCanvas.width = v.videoWidth;
					imageCanvas.height = v.videoHeight;

					imageCtx.drawImage(v, 0, 0, v.videoWidth, v.videoHeight);

					//Convert the canvas to blob and post the file
					imageCanvas.toBlob(postFile, 'image/jpeg');
				}

				//Take a picture on click
				v.onclick = function() {
					console.log('click');
					sendImagefromCanvas();
				};

				window.onload = function () {

					//Get camera video
					navigator.mediaDevices.getUserMedia({video: {width: 640, height: 360}, audio: false})
						.then(stream => {
							v.srcObject = stream;
						})
						.catch(err => {
							console.log('navigator.getUserMedia error: ', err)
						});

				};

			script>

app.py

@app.route('/', methods=['GET', 'POST'])
def upinfo():
    if request.method == 'POST':
        if request.files['image']:
            photo = request.files['image']
            basepath = os.path.dirname(__file__)
            filename = secure_filename(photo.filename)
            uploadpath = os.path.join(basepath, 'static/screenshot', filename)
            photo.save(uploadpath + '.jpg')

            Reshape = transforms.Resize((160, 160))
            trans = transforms.Compose([Reshape])
            img = trans(tojpg(Image.open(photo)))
            save_path = 'static/recognized_screenshot/' + "recognized_" + filename + '.jpg'
            newphoto = mtcnn_single(img, save_path=save_path)

            uploadpath = os.path.join(basepath, 'static/recognized_screenshot', 'recognized_'+filename)
            args = {'img_path': uploadpath + '.jpg', 'dataset_path': 'static/face_dataset.json',
                    'origin_data': 'static/DataBase'}
            out = classify_test(args)
            if out != "no matched people":
                print("数据库存储路径:" + out)
                print("识别成功!")
            else:
                print(out)
                print("数据库中不存在该人脸信息!")

            return {'path': out}

    return render_template('aaa.html')
Owner
Xuhua Huang
Xuhua Huang
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023