Hierarchical Time Series Forecasting using Prophet

Overview

htsprophet

Hierarchical Time Series Forecasting using Prophet

Credit to Rob J. Hyndman and research partners as much of the code was developed with the help of their work.

https://www.otexts.org/fpp

https://robjhyndman.com/publications/

Credit to Facebook and their fbprophet package.

https://facebookincubator.github.io/prophet/

It was my intention to make some of the code look similar to certain sections in the Prophet and (Hyndman's) hts packages.

Downloading

  1. pip install htsprophet

If you'd like to just skip to coding with the package, runHTS.py should help you with that, but if you like reading, the following should help you understand how I built htsprophet and how it works.

Part I: The Data

I originally used Redfin traffic data to build this package.

I pulled the data so that date was in the first column, my layers were the middle columns, and the number I wanted to forecast was in the last column.

I made a function called makeWeekly() , that rolls up your data into the weekly level. It’s not a necessary function, it was mostly just convenient for me.

So the data looked like this:

Date Platform Medium BusinessMarket Sessions
1100 B.C. Stone Tablet Land Birmingham 23234
... Car Phone Air Auburn 2342
... Sea Evanston 233
... Seattle 445
... 46362

I then ran my orderHier() function with just this dataframe as its input.

NOTE: you cannot run this function if you have more than 4 columns in the middle (in between Date and Sessions for ex.)

To run this function, you specify the data, and how you want your middle columns to be ordered.

So orderHier(data, 2, 1, 3) means you want the second column after date to be the first level of the hierarchy.

Our example would look like this:

Alt text

Date Total Land Air Sea Land_Stone tablet Land_Car Phone Air_Stone tablet
1100 B.C. 24578 23135 555 888 23000 135 550
1099 B.C. 86753 86654 44 55 2342 84312 22
... ... ... ... ... ... ... ...
*All numbers represent the number of sessions for each node in the Hierarchy

If you have more than 4 categorical columns, then you must get the data in this format on your own while also producing the list of lists called nodes

Nodes – describes the structure of the hierarchy.

Here it would equal [[3],[2,2,2],[4,4,4,4,4,4]]

There are 3 nodes in the first level: Land, Air, Sea.

There are 2 children for each of those nodes: Stone tablet, Car phone.

There are 4 business markets for each of those nodes: Tokyo, Hamburg etc.

If you use the orderHier function, nodes will be the second output of the function.

Part II: Prophet Inputs

Anything that you would specify in Prophet you can specify in hts().

It’s flexible and will allow you to input a dataframe of values for inputs like cap, capF, and changepoints.

All of these inputs are specified when you call hts, and after that you just let it run.

The following is the description of inputs and outputs for hts as well as the specified defaults:

Parameters
----------------
 y - dataframe of time-series data
           Layout:
               0th Col - Time instances
               1st Col - Total of TS
               2nd Col - One of the children of the Total TS
               3rd Col - The other child of the Total TS
               ...
               ... Rest of the 1st layer
               ...
               Xth Col - First Child of the 2nd Col
               ...
               ... All of the 2nd Col's Children
               ...
               X+Yth Col - First Child of the 3rd Col
               ...
               ..
               .   And so on...

 h - number of step ahead forecasts to make (int)

 nodes - a list or list of lists of the number of child nodes at each level
 Ex. if the hierarchy is one total with two child nodes that comprise it, the nodes input would be [2]
 
 method – (String)  the type of hierarchical forecasting method that the user wants to use. 
            Options:
            "OLS" - optimal combination using ordinary least squares (Default), 
            "WLSS" - optimal combination using structurally weighted least squares, 
            "WLSV" - optimal combination using variance weighted least squares, 
            "FP" - forcasted proportions (top-down)
            "PHA" - proportions of historical averages (top-down)
            "AHP" - average historical proportions (top-down)
            "BU" - bottom-up (simple addition)
            "CVselect" - select which method is best for you based on 3-fold Cross validation (longer run time)
 
 freq - (Time Frequency) input for the forecasting function of Prophet 
 
 include_history - (Boolean) input for the forecasting function of Prophet
 
 transform - (None or "BoxCox") Do you want to transform your data before fitting the prophet function? If yes, type "BoxCox"
            
 cap - (Dataframe or Constant) carrying capacity of the input time series.  If it is a dataframe, then
                               the number of columns must equal len(y.columns) - 1
                               
 capF - (Dataframe or Constant) carrying capacity of the future time series.  If it is a dataframe, then
                                the number of columns must equal len(y.columns) - 1
 
 changepoints - (DataFrame or List) changepoints for the model to consider fitting. If it is a dataframe, then
                                    the number of columns must equal len(y.columns) - 1
 
 n_changepoints - (constant or list) changepoints for the model to consider fitting. If it is a list, then
                                     the number of items must equal len(y.columns) - 1
 skipFitting - (Boolean) if y is already a dictionary of dataframes, set this to True, and DO NOT run with method = "cvSelect" or transform = "BoxCox"
 
 numThreads - (int) number of threads you want to use when running cvSelect. Note: 14 has shown to decrease runtime by 10 percent 
 
 All other inputs - see Prophet
 
Returns
-----------------
 ynew - a dictionary of DataFrames with predictions, seasonalities and trends that can all be plotted

Don’t forget to specify the frequency if you’re not using daily data.

All other functions should be self-explanatory.

Part III: Room For Improvement

  1. Prediction intervals
Owner
Collin Rooney
Collin Rooney
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022