Kalman filter library

Overview

Kalman filter library

Introduction

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM. It is designed to provide very accurate results, work online or offline, be fairly computationally efficient, be easy to design filters with in python.

Feature walkthrough

Extended Kalman Filter with symbolic Jacobian computation

Most dynamic systems can be described as a Hidden Markov Process. To estimate the state of such a system with noisy measurements one can use a Recursive Bayesian estimator. For a linear Markov Process a regular linear Kalman filter is optimal. Unfortunately, a lot of systems are non-linear. Extended Kalman Filters can model systems by linearizing the non-linear system at every step, this provides a close to optimal estimator when the linearization is good enough. If the linearization introduces too much noise, one can use an Iterated Extended Kalman Filter, Unscented Kalman Filter or a Particle Filter. For most applications those estimators are overkill. They add a lot of complexity and require a lot of additional compute.

Conventionally Extended Kalman Filters are implemented by writing the system's dynamic equations and then manually symbolically calculating the Jacobians for the linearization. For complex systems this is time consuming and very prone to calculation errors. This library symbolically computes the Jacobians using sympy to simplify the system's definition and remove the possibility of introducing calculation errors.

Error State Kalman Filter

3D localization algorithms usually also require estimating orientation of an object in 3D. Orientation is generally represented with euler angles or quaternions.

Euler angles have several problems, there are multiple ways to represent the same orientation, gimbal lock can cause the loss of a degree of freedom and lastly their behaviour is very non-linear when errors are large. Quaternions with one strictly positive dimension don't suffer from these issues, but have another set of problems. Quaternions need to be normalized otherwise they will grow unbounded, but this cannot be cleanly enforced in a kalman filter. Most importantly though a quaternion has 4 dimensions, but only represents 3 degrees of freedom, so there is one redundant dimension.

Kalman filters are designed to minimize the error of the system's state. It is possible to have a kalman filter where state and the error of the state are represented in a different space. As long as there is an error function that can compute the error based on the true state and estimated state. It is problematic to have redundant dimensions in the error of the kalman filter, but not in the state. A good compromise then, is to use the quaternion to represent the system's attitude state and use euler angles to describe the error in attitude. This library supports and defining an arbitrary error that is in a different space than the state. Joan Solà has written a comprehensive description of using ESKFs for robust 3D orientation estimation.

Multi-State Constraint Kalman Filter

How do you integrate feature-based visual odometry with a Kalman filter? The problem is that one cannot write an observation equation for 2D feature observations in image space for a localization kalman filter. One needs to give the feature observation a depth so it has a 3D position, then one can write an obvervation equation in the kalman filter. This is possible by tracking the feature across frames and then estimating the depth. However, the solution is not that simple, the depth estimated by tracking the feature across frames depends on the location of the camera at those frames, and thus the state of the kalman filter. This creates a positive feedback loop where the kalman filter wrongly gains confidence in it's position because the feature position updates reinforce it.

The solution is to use an MSCKF, which this library fully supports.

Rauch–Tung–Striebel smoothing

When doing offline estimation with a kalman filter there can be an initialization period where states are badly estimated. Global estimators don't suffer from this, to make our kalman filter competitive with global optimizers we can run the filter backwards using an RTS smoother. Those combined with potentially multiple forward and backwards passes of the data should make performance very close to global optimization.

Mahalanobis distance outlier rejector

A lot of measurements do not come from a Gaussian distribution and as such have outliers that do not fit the statistical model of the Kalman filter. This can cause a lot of performance issues if not dealt with. This library allows the use of a mahalanobis distance statistical test on the incoming measurements to deal with this. Note that good initialization is critical to prevent good measurements from being rejected.

Owner
comma.ai
Make driving chill
comma.ai
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023