The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

Overview

GitHub Contributors Image

MLOps

The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

In this paradigm, teams can easily collaborate in models, with clear tracking of the data throughout the process of cleaning, processing, and feature creation. Automating every repetitive process avoids human error and reduces the delivery time, ensuring the team keeps focusing on the Business Problem.

Some benefits:

  • Versioning data and code, making models to be auditable and reproducible.

  • Automated tests and building ensuring quality functioning of artifacts and availability for the delivery pipelines.

  • Makes it easier and faster the deployment of new models by using an automated cycle.

The MLOps Project

The MLOps project is a path to learning how to implement a study case aiming to be testable and reproducible within the CI/CD methodology, using the best programming practices.

The scope of this project is delimited as you can see in the image below.

We will select the best tool to implement every step, integrate them, and build a Machine Learning Orchestrator. That said, in the end, new ML experiments will be easily made, and delivered as simples as typing a terminal command or clicking on a button!


Prerequisites

For mlops_project to work correctly, first, you should install the prerequisites

Contributing

Have an idea of how to improve this project but don't know how to start, try to contribute

You can understand the project organization here

How to use?

If you are interested just in using this package, follow the steps below.

  1. Clone the repository

    Open a terminal (if you are using Windows, make sure of using the git bash) navigate to the desired destination folder and clone the repository,

    git clone https://github.com/Schots/mlops_project.git

    The Makefile on the root folder defines a set of functions needed to automate repetitive processes in this project. Type "make" in the terminal and see the available functions.


  1. Create an environment & Install requirements

    Create a Python virtual environment for the MLOps project on your local machine. Use any tool you desire. Activate the environment and install the requirements using make:

    make requirements
  2. Download data

    To download the raw dataset, use the get_data

    make get_data

    type the dataset name when prompted. The zip file with data will be downloaded and unzipped under the data/raw folder


Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Maykon Schots
Maykon Schots
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
flexible time-series processing & feature extraction

A corona statistics and information telegram bot.

PreDiCT.IDLab 206 Dec 28, 2022
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021