Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Overview

Trading Tesla with Machine Learning and Sentiment Analysis

An interactive program to train a Random Forest Classifier to predict Tesla daily prices using technical indicators and sentiment scores of Twitter posts, backtesting the trading strategy and producing performance metrics.

The project leverages techniques, paradigms and data structures such as:

  • Functional and Object-Oriented Programming
  • Machine Learning
  • Sentiment Analysis
  • Concurrency and Parallel Processing
  • Direct Acyclic Graph (D.A.G.)
  • Data Pipeline
  • Idempotence

Scope

The intention behind this project was to implement the end-to-end workflow of the backtesting of an Algorithmic Trading strategy in a program with a sleek interface, and with a level of automation such that the user is able to tailor the details of the strategy and the output of the program by entering a minimal amount of data, partly even in an interactive way. This should make the program reusable, meaning that it's easy to carry out the backtesting of the trading strategy on a different asset. Furthermore, the modularity of the software design should facilitate changes to adapt the program to different requirements (i.e. different data or ML models).

Strategy Backtesting Results

The Random Forest classifier model was trained and optimised with the scikit-learn GridSearchCV module. After computing the trading signals predictions and backtesting the strategy, the following performances were recorded:

Performance Indicators Summary
Return Buy and Hold (%) 273.94
Return Buy and Hold Ann. (%) 91.5
Return Trading Strategy (%) 1555.54
Return Trading Strategy Ann. (%) 298.53
Sharpe Ratio 0.85
Hit Ratio (%) 93.0
Average Trades Profit (%) 3.99
Average Trades Loss (%) -1.15
Max Drawdown (%) -7.69
Days Max Drawdown Recovery 2

drawdown

returns

Running the Program

This is straightforward. There are very few variables and methods to initialise and call in order to run the whole program.

Let me illustrate it in the steps below:

  1. Provide the variables in download_params, a dictionary containing all the strategy and data downloading details.

    download_params = {'ticker' : 'TSLA',
                       'since' : '2010-06-29', 
                       'until' : '2021-06-02',
                       'twitter_scrape_by_account' : {'elonmusk': {'search_keyword' : '',
                                                                   'by_hashtag' : False},
                                                      'tesla': {'search_keyword' : '',
                                                                'by_hashtag' : False},
                                                      'WSJ' : {'search_keyword' : 'Tesla',
                                                               'by_hashtag' : False},
                                                      'Reuters' : {'search_keyword' : 'Tesla',
                                                                   'by_hashtag' : False},
                                                      'business': {'search_keyword' : 'Tesla',
                                                                   'by_hashtag' : False},
                                                      'CNBC': {'search_keyword' : 'Tesla',
                                                               'by_hashtag' : False},
                                                      'FinancialTimes' : {'search_keyword' : 'Tesla',
                                                                          'by_hashtag' : True}},
                       'twitter_scrape_by_most_popular' : {'all_twitter_1': {'search_keyword' : 'Tesla',
                                                                           'max_tweets_per_day' : 30,
                                                                           'by_hashtag' : True}},
                       'language' : 'en'                                      
                       }
  2. Initialise an instance of the Pipeline class:

    TSLA_data_pipeline = Pipeline()
  3. Call the run method on the Pipeline instance:

    TSLA_pipeline_outputs = TSLA_data_pipeline.run()

    This will return a dictionary with the Pipeline functions outputs, which in this example has been assigned to TSLA_pipeline_outputs. It will also print messages about the status and operations of the data downloading and manipulation process.

  4. Retrieve the path to the aggregated data to feed into the Backtest_Strategy class:

    data = glob.glob('data/prices_TI_sentiment_scores/*')[0]
  5. Initialise an instance of the Backtest_Strategy class with the data variable assigned in the previous step.

    TSLA_backtest_strategy = Backtest_Strategy(data)
  6. Call the preprocess_data method on the Backtest_Strategy instance:

    TSLA_backtest_strategy.preprocess_data()

    This method will show a summary of the data preprocessing results such as missing values, infinite values and features statistics.

From this point the program becomes interactive, and the user is able to input data, save and delete files related to the training and testing of the Random Forest model, and proceed to display the strategy backtesting summary and graphs.

  1. Call the train_model method on the Backtest_Strategy instance:

    TSLA_backtest_strategy.train_model()

    Here you will be able to train the model with the scikit-learn GridSearchCV, creating your own parameters grid, save and delete files containing the parameters grid and the best set of parameters found.

  2. Call the test_model method on the Backtest_Strategy instance:

    TSLA_backtest_strategy.test_model()

    This method will allow you to test the model by selecting one of the model's best parameters files saved during the training process (or the "default_best_param.json" file created by default by the program, if no other file was saved by the user).

    Once the process is complete, it will display the testing summary metrics and graphs.

    If you are satisfied with the testing results, from here you can display the backtesting summary, which equates to call the next and last method below. In this case, the program will also save a csv file with the data to compute the strategy performance metrics.

  3. Call the strategy_performance method on the Backtest_Strategy instance:

    TSLA_backtest_strategy.strategy_performance()

    This is the method to display the backtesting summary shown above in this document. Assuming a testing session has been completed and there is a csv file for computing the performance metrics, the program will display the backtesting results straight away using the existing csv file, which in turn is overwritten every time a testing process is completed. Otherwise, it will prompt you to run a training/testing session first.

Tips

If the required data (historical prices and Twitter posts) have been already downloaded, the only long execution time you may encounter is during the model training: the larger the parameters grid search, the longer the time. I recommend that you start getting confident with the program by using the data already provided within the repo (backtesting on Tesla stock).

This is because any downloading of new data on a significantly large period of time such to be reliable for the model training will likely require many hours, essentially due to the Twitter scraping process.

That said, please be also aware that as soon as you change the variables in the download_params dictionary and run the Pipeline instance, all the existing data files will be overwritten. This is because the program recognise on its own the relevant data that need to be downloaded according to the parameters passed into download_params, and this is a deliberate choice behind the program design.

That's all! Clone the repository and play with it. Any feedback welcome.

Disclaimer

Please be aware that the content and results of this project do not represent financial advice. You should conduct your own research before trading or investing in the markets. Your capital is at risk.

References

Owner
Renato Votto
Renato Votto
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022