Stacked Generalization (Ensemble Learning)

Overview

Stacking (stacked generalization)

PyPI version license

Overview

ikki407/stacking - Simple and useful stacking library, written in Python.

User can use models of scikit-learn, XGboost, and Keras for stacking.
As a feature of this library, all out-of-fold predictions can be saved for further analisys after training.

Description

Stacking (sometimes called stacked generalization) involves training a learning algorithm to combine the predictions of several other learning algorithms. The basic idea is to use a pool of base classifiers, then using another classifier to combine their predictions, with the aim of reducing the generalization error.

This blog is very helpful to understand stacking and ensemble learning.

Usage

See working example:

To run these examples, just run sh run.sh. Note that:

  1. Set train and test dataset under data/input

  2. Created features from original dataset need to be under data/output/features

  3. Models for stacking are defined in scripts.py under scripts folder

  4. Need to define created features in that scripts

  5. Just run sh run.sh (python scripts/XXX.py).

Detailed Usage

  1. Set train dataset with its target data and test dataset.

    FEATURE_LIST_stage1 = {
                    'train':(
                             INPUT_PATH + 'train.csv',
                             FEATURES_PATH + 'train_log.csv',
                            ),
    
                    'target':(
                             INPUT_PATH + 'target.csv',
                            ),
    
                    'test':(
                             INPUT_PATH + 'test.csv',
                             FEATURES_PATH + 'test_log.csv',
                            ),
                    }
  2. Define model classes that inherit BaseModel class, which are used in Stage 1, Stage 2, ..., Stage N.

    # For Stage 1
    PARAMS_V1 = {
            'colsample_bytree':0.80,
            'learning_rate':0.1,"eval_metric":"auc",
            'max_depth':5, 'min_child_weight':1,
            'nthread':4,
            'objective':'binary:logistic','seed':407,
            'silent':1, 'subsample':0.60,
            }
    
    class ModelV1(BaseModel):
            def build_model(self):
                return XGBClassifier(params=self.params, num_round=10)
    
    ...
    
    # For Stage 2
    PARAMS_V1_stage2 = {
                        'penalty':'l2',
                        'tol':0.0001, 
                        'C':1.0, 
                        'random_state':None, 
                        'verbose':0, 
                        'n_jobs':8
                        }
    
    class ModelV1_stage2(BaseModel):
            def build_model(self):
                return LR(**self.params)
  3. Train each models of Stage 1 for stacking.

    m = ModelV1(name="v1_stage1",
                flist=FEATURE_LIST_stage1,
                params = PARAMS_V1,
                kind = 'st'
                )
    m.run()
    
    ...
  4. Train each model(s) of Stage 2 by using the prediction of Stage-1 models.

    FEATURE_LIST_stage2 = {
                'train': (
                         TEMP_PATH + 'v1_stage1_all_fold.csv',
                         TEMP_PATH + 'v2_stage1_all_fold.csv',
                         TEMP_PATH + 'v3_stage1_all_fold.csv',
                         TEMP_PATH + 'v4_stage1_all_fold.csv',
                         ...
                         ),
    
                'target':(
                         INPUT_PATH + 'target.csv',
                         ),
    
                'test': (
                        TEMP_PATH + 'v1_stage1_test.csv',
                        TEMP_PATH + 'v2_stage1_test.csv',
                        TEMP_PATH + 'v3_stage1_test.csv',
                        TEMP_PATH + 'v4_stage1_test.csv',
                        ...                     
                        ),
                }
    
    # Models
    m = ModelV1_stage2(name="v1_stage2",
                    flist=FEATURE_LIST_stage2,
                    params = PARAMS_V1_stage2,
                    kind = 'st',
                    )
    m.run()
  5. Final result is saved as v1_stage2_TestInAllTrainingData.csv.

Prerequisite

  • (MaxOS) Install xgboost first manually: pip install xgboost
  • (Optional) Install paratext: fast csv loading library

Installation

To install stacking, cd to the stacking folder and run the install command**(up-to-date version, recommended)**:

sudo python setup.py install

You can also install stacking from PyPI:

pip install stacking

Files

Details of scripts

  • base.py:
    • Base models for stacking are defined here (using sklearn.base.BaseEstimator).
    • Some models are defined here. e.g., XGBoost, Keras, Vowpal Wabbit.
    • These models are wrapped as scikit-learn like (using sklearn.base.ClassifierMixin, sklearn.base.RegressorMixin).
    • That is, model class has some methods, fit(), predict_proba(), and predict().

New user-defined models can be added here.

Scikit-learn models can be used.

Base model have some arguments.

  • 's': Stacking. Saving oof(out-of-fold) prediction({model_name}_all_fold.csv) and average of test prediction based on train-fold models({model_name}_test.csv). These files will be used for next level stacking.

  • 't': Training with all data and predict test({model_name}_TestInAllTrainingData.csv). In this training, no validation data are used.

  • 'st': Stacking and then training with all data and predict test ('s' and 't').

  • 'cv': Only cross validation without saving the prediction.

Define several models and its parameters used for stacking. Define task details on the top of script. Train and test feature set are defined here. Need to define CV-fold index.

Any level stacking can be defined.

PredictionFiles

Reference

[1] Wolpert, David H. Stacked generalization, Neural Networks, 5(2), 241-259

[2] Ensemble learning(Stacking)

[3] KAGGLE ENSEMBLING GUIDE

Owner
Ikki Tanaka
Data Scientist, Machine Learning/Reinforcement Learning Engineer. Kaggle Master.
Ikki Tanaka
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023