High performance implementation of Extreme Learning Machines (fast randomized neural networks).

Related tags

Machine Learninghpelm
Overview

High Performance toolbox for Extreme Learning Machines.

Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which solve classification and regression problems. Their performance is comparable to a classical Multilayer Perceptron trained with Error Back-Propagation algorithm, but the training time is up to 6 orders of magnitude smaller. (yes, a million times!)

ELMs are suitable for processing huge datasets and dealing with Big Data, and this toolbox is created as their fastest and most scalable implementation.

Documentation is available here: http://hpelm.readthedocs.org, it uses Numpydocs.

NEW: Parallel HP-ELM tutorial! See the documentation: http://hpelm.readthedocs.org

Highlights:
  • Efficient matrix math implementation without bottlenecks
  • Efficient data storage (HDF5 file format)
  • Data size not limited by the available memory
  • GPU accelerated computations (if you have one)
  • Regularization and model selection (for in-memory models)
Main classes:
  • hpelm.ELM for in-memory computations (dataset fits into RAM)
  • hpelm.HPELM for out-of-memory computations (dataset on disk in HDF5 format)
Example usage::
>>> from hpelm import ELM
>>> elm = ELM(X.shape[1], T.shape[1])
>>> elm.add_neurons(20, "sigm")
>>> elm.add_neurons(10, "rbf_l2")
>>> elm.train(X, T, "LOO")
>>> Y = elm.predict(X)

If you use the toolbox, cite our open access paper "High Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications" in IEEE Access. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7140733&newsearch=true&queryText=High%20Performance%20Extreme%20Learning%20Machines

@ARTICLE{7140733, author={Akusok, A. and Bj"{o}rk, K.-M. and Miche, Y. and Lendasse, A.}, journal={Access, IEEE}, title={High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications}, year={2015}, volume={3}, pages={1011-1025}, doi={10.1109/ACCESS.2015.2450498}, ISSN={2169-3536}, month={},}

Owner
Anton Akusok
Anton Akusok
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
Pragmatic AI Labs 421 Dec 31, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022