SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

Overview

hexhamming

Pip Prs Github

What does it do?

This module performs a fast bitwise hamming distance of two hexadecimal strings.

This looks like:

DEADBEEF = 11011110101011011011111011101111
00000000 = 00000000000000000000000000000000
XOR      = 11011110101011011011111011101111
Hamming  = number of ones in DEADBEEF ^ 00000000 = 24

This essentially amounts to

>>> import gmpy
>>> gmpy.popcount(0xdeadbeef ^ 0x00000000)
24

except with Python strings, so

>>> import gmpy
>>> gmpy.popcount(int("deadbeef", 16) ^ int("00000000", 16))
24

A few assumptions are made and enforced:

  • this is a valid hexadecimal string (i.e., [a-fA-F0-9]+)
  • the strings are the same length
  • the strings do not begin with "0x"

Why yet another Hamming distance library?

There are a lot of fantastic (python) libraries that offer methods to calculate various edit distances, including Hamming distances: Distance, textdistance, scipy, jellyfish, etc.

In this case, I needed a hamming distance library that worked on hexadecimal strings (i.e., a Python str) and performed blazingly fast. Furthermore, I often did not care about hex strings greater than 256 bits. That length constraint is different vs all the other libraries and enabled me to explore vectorization techniques via numba, numpy, and SSE/AVX intrinsics.

Lastly, I wanted to minimize dependencies, meaning you do not need to install numpy, gmpy, cython, pypy, pythran, etc.

Eventually, after playing around with gmpy.popcount, numba.jit, pythran.run, numpy, I decided to write what I wanted in essentially raw C. At this point, I'm using raw char* and int*, so exploring re-writing this in Fortran makes little sense.

Installation

To install, ensure you have Python 2.7 or 3.4+. Run

pip install hexhamming

or to install from source

git clone https://github.com/mrecachinas/hexhamming
cd hexhamming
python setup.py install # or pip install .

If you want to contribute to hexhamming, you should install the dev dependencies

pip install -r requirements-dev.txt

and make sure the tests pass with

python -m pytest -vls .

Example

Using hexhamming is as simple as

>>> from hexhamming import hamming_distance_string
>>> hamming_distance_string("deadbeef", "00000000")
24

New in v2.0.0 : hexhamming now supports byte`s via ``hamming_distance_bytes`. You use it in the exact same way as before, except you pass in a byte string.

>>> from hexhamming import hamming_distance_bytes
>>> hamming_distance_bytes(b"\xde\xad\xbe\xef", b"\x00\x00\x00\x00")
24

Benchmark

Below is a benchmark using pytest-benchmark with hexhamming==v1.3.2 my 2020 2.0 GHz quad-core Intel Core i5 16 GB 3733 MHz LPDDR4 macOS Catalina (10.15.5) with Python 3.7.3 and Apple clang version 11.0.3 (clang-1103.0.32.62).

Name Mean (ns) Std (ns) Median (ns) Rounds Iterations
test_hamming_distance_bench_3 93.8 10.5 94.3 53268 200
test_hamming_distance_bench_3_same 94.2 15.2 94.9 102146 100
test_check_hexstrings_within_dist_bench 231.9 104.2 216.5 195122 22
test_hamming_distance_bench_256 97.5 34.1 94.0 195122 22
test_hamming_distance_bench_1000 489.8 159.4 477.5 94411 20
test_hamming_distance_bench_1000_same 497.8 87.8 496.6 18971 20
test_hamming_distance_bench_1024 509.9 299.5 506.7 18652 10
test_hamming_distance_bench_1024_same 467.4 205.9 450.4 181819 10
Owner
Michael Recachinas
Husband to @erinrecachinas, Dad, 🐶 Dad, he/him/his
Michael Recachinas
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022