slim-python is a package to learn customized scoring systems for decision-making problems.

Overview

slim-python is a package to learn customized scoring systems for decision-making problems.

These are simple decision aids that let users make yes-no predictions by adding and subtracting a few small numbers. SLIM scoring system for the mushrooms dataset

SLIM is designed to learn the most accurate scoring system for a given dataset and set of constraints. These models are produced by solving a hard optimization problem that directly optimizes for accuracy, sparsity, and customized constraints (e.g., hard limits on model size, TPR, FPR).

Requirements

slim-python was developed using Python 2.7.11 and CPLEX 12.6.2.

CPLEX

CPLEX is cross-platform commercial optimization tool with a Pytho API. It is freely available to students and faculty members at accredited institutions as part of the IBM Academic Initiative. To get CPLEX:

  1. Join the IBM Academic Initiative. Note that it may take up to a week to obtain approval.
  2. Download IBM ILOG CPLEX Optimization Studio V12.6.1 (or higher) from the software catalog
  3. Install the file on your computer. Note mac/unix users will need to install a .bin file.
  4. Setup the CPLEX Python modules as described here here.

Please check the CPLEX user manual or the CPLEX forums if you have problems installing CPLEX.

Citation

If you use SLIM for academic research, please cite our paper!

@article{
    ustun2015slim,
    year = {2015},
    issn = {0885-6125},
    journal = {Machine Learning},
    doi = {10.1007/s10994-015-5528-6},
    title = {Supersparse linear integer models for optimized medical scoring systems},
    url = {http://dx.doi.org/10.1007/s10994-015-5528-6},
    publisher = { Springer US},
    author = {Ustun, Berk and Rudin, Cynthia},
    pages = {1-43},
    language = {English}
}
Owner
Berk Ustun
machine learning, optimization, human-centered design
Berk Ustun
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

sklearn-compatible Random Bits Forest Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a b

Tamas Madl 8 Jul 24, 2021
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022