Avocado hass time series vs predict price

Overview

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE

Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới image

predict_avocado

https://avocado-hass.herokuapp.com/ deployed to Heroku

Please change setting to theme dark

Nếu trường muốn coi trên máy local host thì làm các bước sau:

Bước 1: Down code trên github về Bước 2: Vào trang streamlit để thực hiện theo hướng dẫn của treamlit: https://docs.streamlit.io/library/get-started/installation

I. TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU

  1. Mục đích
    • Dự đoán giá bơ trung bình của bơ "Hass" ở Mỹ
    • Xem xét mở rộng các loại trang trại Bơ đang có trong việc trồng bơ ở các vùng khác
    • Xây dựng mô hình dự báo giá trùng bình của bơ "Hass" ở Mỹ sau đó xem xét việc mở rộng sản xuất kinh doanh
  2. Vi sao có dự án nào ?
    • Ai (Who): Doanh nghiệp là người cần
    • Tại sao (Why): Giá bơ biến động ở các vùng khác nhau ? Có nên trồng bơ các vùng đó không ?
  3. Hiện tại
    • Công ty kinh doanh quả bơ ở rất nhiều vùng của nước Mỹ có 2 loại bơ: Bơ thường và bơ hữu cơ
    • Quy cách đóng gọi theo nhiều quy chuẩn: Small/ Large/ Xlarge Bags
    • Có 3 loại item (product look up) khác nhau: 4046, 4225, 4770
  4. Vấn đề
    • Doanh nghiệp chưa có mô hình dự báo giá bơ cho việc mở rộng
    • Tối ưu sao việc tiếp cận giá bơ tới người tiêu dùng thấp nhất
  5. Thách thức và cách tiếp cận - Challenge and Approach
    • Dữ liệu được lấy trực tiếp từ máy tính tính tiền của các nhà bán lẻ dựa trên doanh số bán lẻ thực tế của bơ Hass
    • Dữ liệu đại diện cho dữ liệu lấy từ máy quét bán lẻ hàng tuần cho lượng bán lẻ (National retail volumn - units) và giá bơ từ tháng 4/2015 đến tháng 3/2018
    • Giá Trung bình (Average Price) trong bảng phản ánh giá trên một đơn vị (mỗi quả bơ), ngay cả khi nhiều đơn vị (bơ) được bán trong bao
    • Mã tra cứu sản phẩm - Product Lookup codes (PLU’s) trong bảng chỉ dành cho bơ Hass, không dành cho các sản phẩm khác.
  6. Data obtained - Thu thập dữ liệu
    • Không thông quan nguồn cào data
    • Toàn bộ dữ liệu được đổ ra và lưu trữ trong tập tin avocado.csv với 18249 record.
    • Có 2 loại bơ trong tập dữ liệu và một số vùng khác nhau. Điều này cho phép chúng ta thực hiện tất cả các loại phân tích cho các vùng khác nhau hoặc phân tích toàn bộ nước mỹ theo một trong 2 loại bơ
  7. Đặt ra yêu cầu với bài toán

Yêu cầu 1: Với bài toán 1: thực hiện dự đoán giá bơ trung bình

  • Thực hiện các tiền xử lý dữ liệu bổ sung (nếu cần)
  • Ngoài những thuật toán regression đã được thực hiện, có thuật toán nào khác cho kết quả tốt hơn không? Thực hiện với thuật toán đó. Tổng hợp kết quả thu được."

Yêu cầu 2: Với bài toán 2: Thực hiện dự đoán giá, khả năng mở rộng trong tương lai với Organic Avocado ở vùng California

Yêu cầu 3: Hãy làm tiếp phần dự đoán giá bơ thường (Conventiton Avocado) của vùng California

Yêu cầu 4: Hãy chọn ra 1 vùng (Trong danh sách các vùng bơ "Hass" đang kinh doanh) mà bạn cho rằng trong tương lai có thể trong trọt, sản xuất kinh doanh (organic và/ hoặc Conventional Avocado). Hãy chứng minh đều này bằng cách triển khai các bài toán như đã với vùng california

II. TỔNG QUAN VỀ THỊ TRƯỜNG

  1. Thị trường Hoa Kỳ image
  2. Mục tiêu và cấn tiếp cận image
  3. Ai là người và cần gì ? image
  4. Kết luận image

III. HƯỚNG DẪN SỬ DỤNG VÀ CHỌN CÁC TÍNH NĂNG DỰ ĐOÁN GIÁ BƠ

image

Owner
hieulmsc
Supply chain management and finance, costing analysis
hieulmsc
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022