Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Overview

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Overview

Bank Jago has attracted investors' attention since the end of December 2020, where previously the company was named PT Bank Atos Indonesia Tbk, then on 27 May 2021 based on the Decree of the Deputy Commissioner for Banking Supervision I OJK Number KEP-95/PB.1/2020 dated 27 may 2020 regarding the application of the use of a business license on behalf of PT Bank Artos Indonesia, Tbk to become PT Bank Jago, Tbk. this attracted the attention of investors because Bank Jago plans to transform digital banks, through this strategic planning since 2020, Bank Jago has become a concern for investors, where at the end of 2020 Bank Jago's share price was recorded at Rp 3,566. interestingly, Gojek through its subsidiary PT Dompet Karya Anak Bangsa acquired 1.95 billion shares of Bank Jago worth Rp 2.25 trillion on December 18, 2020. Until now, the stock price of Bank Jago with the stock code "Arto" to be exact 12 November 2021 is worth Rp 15,500, meaning that since December 2020 there has been an increase of 334%. To assess in helping investment decisions, are Arto's shares still attractive for investors to buy or will the price continue to increase? For this reason, this program seeks to assist in predicting Arto's shares in making investment decisions, with the help of the Facebook Prophet and Machine Learning. As reading material, you can read it through Facebook Prophet for time series predictions.

By using historical data obtained from Yahoo Finance, we can analyze what Bank Jago's stock price predictions will look like in the future.

Results

Plotting Using Facebooks Prophet

Plot Arto

We can see, the results of the plot using Facebook Prophet show good model results, indicated by following the actual price line, we can also see that the plot results predict that Bank Jago shares will continue to increase, so this can be considered for investors as a signal buy, or for investors who already have it can continue to hold.

Prediction results using a Machine Learning-based Facebook Prophet model

Screenshot 2021-11-12 233458

If we see, the results of the model predictions are able to produce quite good insight.

Owner
Najibulloh Asror
`Welcome to my world`
Najibulloh Asror
Pragmatic AI Labs 421 Dec 31, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Tom Weichle 2 Apr 18, 2022
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

sklearn-compatible Random Bits Forest Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a b

Tamas Madl 8 Jul 24, 2021
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023