Create large-scale ML-driven multiscale simulation ensembles to study the interactions

Overview

MuMMI RAS v0.1

Released: Nov 16, 2021

MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multiscale simulation ensembles to study the interactions of RAS proteins and RAS-RAF protein complexes with lipid plasma membranes.

MuMMI framework was developed as part of the Pilot2 project of the Joint Design of Advanced Computing Solutions for Cancer funded jointly by the Department of Energy (DOE) and the National Cancer Institute (NCI).

The Pilot 2 project focuses on developing multiscale simulation models for understanding the interactions of the lipid plasma membrane with the RAS and RAF proteins. The broad computational tool development aims of this pilot are:

  • Developing scalable multi-scale molecular dynamics code that will automatically switch between phase field, coarse-grained and all-atom simulations.
  • Developing scalable machine learning and predictive models of molecular simulations to:
    • identify and quantify states from simulations
    • identify events from simulations that can automatically signal change of resolution between phase field, coarse-grained and all-atom simulations
    • aggregate information from the multi-resolution simulations to efficiently feedback to/from machine learning tools
  • Integrate sparse information from experiments with simulation data

MuMMI RAS defines the specific functionalities needed for the various components and scales of a target multiscale simulation. The application components need to define the scales, how to read the corresponding data, how to perform ML-based selection, how to run the simulations, how to perform analysis, and how to perform feedback. This code uses several utilities made available through "MuMMI Core".

Publications

MuMMI framework is described in the following publications.

  1. Bhatia et al. Generalizable Coordination of Large Multiscale Ensembles: Challenges and Learnings at Scale. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '21, Article No. 10, November 2021. doi:10.1145/3458817.3476210.

  2. Di Natale et al. A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '19, Article No. 57, November 2019. doi:10.1145/3295500.3356197.
    Best Paper at SC 2019.

  3. Ingólfsson et al. Machine Learning-driven Multiscale Modeling Reveals Lipid-Dependent Dynamics of RAS Signaling Protein. Proceedings of the National Academy of Sciences (PNAS), accepted, 2021. preprint.

  4. Reciprocal Coupling of Coarse-Grained and All-Atom scales. In preparation.

Installation

git clone https://github.com/mummi-framework/mummi-ras
cd mummi-ras
pip3 install .

export MUMMI_ROOT=/path/to/outputs
export MUMMI_CORE=/path/to/core/repo
export MUMMI_APP=/path/to/app/repo
export MUMMI_RESOURCES=/path/to/resources
The installaton process as described above installs the MuMMI framework. The simulation codes (gridsim2d, ddcMD, AMBER, GROMACS) are not included and are to be installed separately.
Spack installation. We are also working towards releasing the option of installing MuMMI and its dependencies through spack.

Authors and Acknowledgements

MuMMI was developed at Lawrence Livermore National Laboratory, in collaboration with Los Alamos National Laboratory, Oak Ridge National Laboratory, and International Business Machines. A list of main contributors is given below.

  • LLNL: Harsh Bhatia, Francesco Di Natale, Helgi I Ingólfsson, Joseph Y Moon, Xiaohua Zhang, Joseph R Chavez, Fikret Aydin, Tomas Oppelstrup, Timothy S Carpenter, Shiv Sundaram (previously LLNL), Gautham Dharuman (previously LLNL), Dong H Ahn, Stephen Herbein, Tom Scogland, Peer-Timo Bremer, and James N Glosli.

  • LANL: Chris Neale and Cesar Lopez

  • ORNL: Chris Stanley

  • IBM: Sara K Schumacher

MuMMI was funded by the Pilot2 project led by Dr. Fred Streitz (DOE) and Dr. Dwight Nissley (NIH). We acknowledge contributions from the entire Pilot 2 team.

This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Los Alamos National Laboratory (LANL) under Contract DE-AC5206NA25396, and Oak Ridge National Laboratory under Contract DE-AC05-00OR22725.

Contact: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550.

Contributing

Contributions may be made through pull requests and/or issues on github.

License

MuMMI RAS is distributed under the terms of the MIT License.

Livermore Release Number: LLNL-CODE-827655

Comments
  • Are the trajectories in your publications publicly available?

    Are the trajectories in your publications publicly available?

    Hi, Congrats on the success, and huge thanks for making it open source. I wonder whether the trajectories in your publications are publicly available. Or are there any demo trajectories?

    I am a Ph.D. student at KAUST, using computer graphics to build and visualize mesoscale biology models, such as SARS-CoV-2 and bacteriophage T4. If possible, I (and my colleagues) would like to perform (multiscale, multi-representation, multi-granularity) visualization research on the trajectories you generated.

    Many thanks, Roden

    opened by RodenLuo 2
  • `flux` vs `slurm`

    `flux` vs `slurm`

    Hi,

    As flux is mentioned in the dependencies, is it possible to reproduce MuMMI RAS on a cluster that only has slurm?

    Workflow dependencies (e.g., python, flux, dynim, keras, etc.)

    Quoted from: https://github.com/mummi-framework/mummi-ras/blob/main/INSTALL.md

    Many thanks, Roden

    opened by RodenLuo 0
  • gridsim2d availability

    gridsim2d availability

    Hi, I wonder if the following code is available or not.

    gridsim2d: to be released shortly

    Quoted from: https://github.com/mummi-framework/mummi-ras/blob/main/INSTALL.md

    Thanks, Roden

    opened by RodenLuo 0
  • Patch for gromacs availability

    Patch for gromacs availability

    Hi, I wonder if the following patch is available or not.

    Note that we have a patch for gromacs installation for customization. To be open-sourced soon.

    Quoted from: https://github.com/mummi-framework/mummi-ras/blob/main/INSTALL.md

    Thanks, Roden

    opened by RodenLuo 0
  • Small scale test data for local deployment

    Small scale test data for local deployment

    Hi, I'm interested in deploying MuMMI on the KAUST IBEX cluster. It is mentioned in the installation doc that there is a small set of test data. Is it now publicly available? If not, is it possible for me to somehow access it so that I can perform a test run?

    Many thanks, Roden

    Again on lassen and on summit, we have created a small set of test data, which can be used to launch MuMMI at small scales. This (and the larger dataset) will be made public through NCI website. Until then, we can make this data available upon request.

    opened by RodenLuo 1
Releases(v1.0.0)
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
李航《统计学习方法》复现

本项目复现李航《统计学习方法》每一章节的算法 特点: 笔记摘要:在每个文件开头都会有一些核心的摘要 pythonic:这里会用尽可能规范的方式来实现,包括编程风格几乎严格按照PEP8 循序渐进:前期的算法会更list的方式来做计算,可读性比较强,后期几乎完全为numpy.array的计算,并且辅助详

58 Oct 22, 2021
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning

The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I

MLJAR 2.4k Jan 02, 2023
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

Claudia dos Anjos 1 Jan 05, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022