Traingenerator 🧙 A web app to generate template code for machine learning ✨

Overview

Traingenerator

🧙   A web app to generate template code for machine learning ✨

Gitter Heroku Code style: black



🎉 Traingenerator is now live! 🎉

Try it out:
https://traingenerator.jrieke.com


Generate custom template code for PyTorch & sklearn, using a simple web UI built with streamlit. Traingenerator offers multiple options for preprocessing, model setup, training, and visualization (using Tensorboard or comet.ml). It exports to .py, Jupyter Notebook, or Google Colab. The perfect tool to jumpstart your next machine learning project!


For updates, follow me on Twitter, and if you like this project, please consider sponsoring ☺




Adding new templates

You can add your own template in 4 easy steps (see below), without changing any code in the app itself. Your new template will be automatically discovered by Traingenerator and shown in the sidebar. That's it! 🎈

Want to share your magic? 🧙 PRs are welcome! Please have a look at CONTRIBUTING.md and write on Gitter.

Some ideas for new templates: Keras/Tensorflow, Pytorch Lightning, object detection, segmentation, text classification, ...

  1. Create a folder under ./templates. The folder name should be the task that your template solves (e.g. Image classification). Optionally, you can add a framework name (e.g. Image classification_PyTorch). Both names are automatically shown in the first two dropdowns in the sidebar (see image). ✨ Tip: Copy the example template to get started more quickly.
  2. Add a file sidebar.py to the folder (see example). It needs to contain a method show(), which displays all template-specific streamlit components in the sidebar (i.e. everything below Task) and returns a dictionary of user inputs.
  3. Add a file code-template.py.jinja to the folder (see example). This Jinja2 template is used to generate the code. You can write normal Python code in it and modify it (through Jinja) based on the user inputs in the sidebar (e.g. insert a parameter value from the sidebar or show different code parts based on the user's selection).
  4. Optional: Add a file test-inputs.yml to the folder (see example). This simple YAML file should define a few possible user inputs that can be used for testing. If you run pytest (see below), it will automatically pick up this file, render the code template with its values, and check that the generated code runs without errors. This file is optional – but it's required if you want to contribute your template to this repo.

Installation

Note: You only need to install Traingenerator if you want to contribute or run it locally. If you just want to use it, go here.

git clone https://github.com/jrieke/traingenerator.git
cd traingenerator
pip install -r requirements.txt

Optional: For the "Open in Colab" button to work you need to set up a Github repo where the notebook files can be stored (Colab can only open public files if they are on Github). After setting up the repo, create a file .env with content:

GITHUB_TOKEN=<your-github-access-token>
REPO_NAME=<user/notebooks-repo>

If you don't set this up, the app will still work but the "Open in Colab" button will only show an error message.

Running locally

streamlit run app/main.py

Make sure to run always from the traingenerator dir (not from the app dir), otherwise the app will not be able to find the templates.

Deploying to Heroku

First, install heroku and login. To create a new deployment, run inside traingenerator:

heroku create
git push heroku main
heroku open

To update the deployed app, commit your changes and run:

git push heroku main

Optional: If you set up a Github repo to enable the "Open in Colab" button (see above), you also need to run:

heroku config:set GITHUB_TOKEN=
   
    
heroku config:set REPO_NAME=
    

    
   

Testing

First, install pytest and required plugins via:

pip install -r requirements-dev.txt

To run all tests:

pytest ./tests

Note that this only tests the code templates (i.e. it renders them with different input values and makes sure that the code executes without error). The streamlit app itself is not tested at the moment.

You can also test an individual template by passing the name of the template dir to --template, e.g.:

pytest ./tests --template "Image classification_scikit-learn"

The mage image used in Traingenerator is from Twitter's Twemoji library and released under Creative Commons Attribution 4.0 International Public License.

Owner
Johannes Rieke
Product manager dev experience @streamlit
Johannes Rieke
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022