A single Python file with some tools for visualizing machine learning in the terminal.

Related tags

Machine Learningmlvt
Overview

Machine Learning Visualization Tools

A single Python file with some tools for visualizing machine learning in the terminal.

This demo is composed of three ideas, which are explained below. Here's how to get started:

git clone https://github.com/bwasti/mlvt.git
cd mlvt
python3 -m pip install -r requirements.txt
python3 test.py # demo above

or just copy the mlvt.py file!

mlvt.Reprint

Reprint helps with in-line animations. It works by keeping track of how much it printed so far and reprinting it when flush() is called.

You can use the with statement to hijack print statements and auto_flush=True to avoid calling flush() in a loop, like so:

print("loading!")
with mlvt.Reprint(auto_flush=True) as rp:
  for i in range(100):
    print(f"{i+1}%") # Reprint detects the loop and overwrites in-place
    time.sleep(0.02)
print("done!")

reprint.gif

or, if you'd prefer to avoid contexts, loop-detection and hijacked builtins

print("loading!")
rp = mlvt.Reprint()
for i in range(100):
  rp.print(f"{i+1}%")
  rp.flush()
  time.sleep(0.02)
print("done!")

mlvt.horiz_concat

horiz_concat concatenates multi-line strings horizontally, accounting for padding and ANSI escape sequences (for color text).

a = """
{ hello! }
          \_    
"""
b = """
 ___
|. .|
| ^ |
| o |
"""
print(mlvt.horiz_concat(a, b, padding=2))

yields


               ___
{ hello! }    |. .|
          \_  | ^ |
              | o |
              

plotille wrappers

Finally, there are a couple of small plotille wrappers that decouple updating charts and printing them. That library is great on its own, so I encourage you to check it out!

import mlvt
import numpy as np

# all charts take in width, height, color
hist = mlvt.Histogram(32, 8, color="bright_blue")
hist.update(np.random.randn(100))
print(hist)

gives us

 (Counts)  ^
8.80000000 |
7.70000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
6.60000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
5.50000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⣶⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
4.40000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⢰⣶⣶⠀⠀⢸⡇⣿⠀⢰⣶⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
3.30000000 | ⠀⠀⠀⠀⠀⠀⠀⣿⢸⣿⣿⣿⣿⢸⣿⣿⣿⢸⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
2.20000000 | ⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⢸⣿⣿⣿⣿⣿⣿⣿⣿⡇⢸⣿⠀⠀⠀⢸⡇⠀⠀
1.10000000 | ⠀⠀⢀⣀⡀⣿⣀⣿⣿⣿⣿⣿⣿⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⣇⣸⡇⠀⠀
         0 | ⠀⠀⢸⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⣿⣿⡇⠀⠀
-----------|-|---------|---------|---------|-> (X)
           | -2.124059 -0.741902 0.6402548 2.0224115
Owner
Bram Wasti
https://twitter.com/bwasti
Bram Wasti
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023