hgboost - Hyperoptimized Gradient Boosting

Overview

hgboost - Hyperoptimized Gradient Boosting

Python PyPI Version License Github Forks GitHub Open Issues Project Status Downloads Downloads Sphinx Open In Colab BuyMeCoffee DOI

Star it if you like it!

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results on an independent validation set. hgboost can be applied for classification and regression tasks.

hgboost is fun because:

* 1. Hyperoptimization of the Parameter-space using bayesian approach.
* 2. Determines the best scoring model(s) using k-fold cross validation.
* 3. Evaluates best model on independent evaluation set.
* 4. Fit model on entire input-data using the best model.
* 5. Works for classification and regression
* 6. Creating a super-hyperoptimized model by an ensemble of all individual optimized models.
* 7. Return model, space and test/evaluation results.
* 8. Makes insightful plots.

Documentation

Regression example Open regression example In Colab

Classification example Open classification example In Colab

Schematic overview of hgboost

Installation Environment

  • Install hgboost from PyPI (recommended). hgboost is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
  • A new environment is recommended and created as following:
conda create -n env_hgboost python=3.6
conda activate env_hgboost

Install newest version hgboost from pypi

pip install hgboost

Force to install latest version

pip install -U hgboost

Install from github-source

pip install git+https://github.com/erdogant/hgboost#egg=master

Import hgboost package

import hgboost as hgboost

Classification example for xgboost, catboost and lightboost:

# Load library
from hgboost import hgboost

# Initialization
hgb = hgboost(max_eval=10, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=42)
# Import data
df = hgb.import_example()
y = df['Survived'].values
y = y.astype(str)
y[y=='1']='survived'
y[y=='0']='dead'

# Preprocessing by encoding variables
del df['Survived']
X = hgb.preprocessing(df)
# Fit catboost by hyperoptimization and cross-validation
results = hgb.catboost(X, y, pos_label='survived')

# Fit lightboost by hyperoptimization and cross-validation
results = hgb.lightboost(X, y, pos_label='survived')

# Fit xgboost by hyperoptimization and cross-validation
results = hgb.xgboost(X, y, pos_label='survived')

# [hgboost] >Start hgboost classification..
# [hgboost] >Collecting xgb_clf parameters.
# [hgboost] >Number of variables in search space is [11], loss function: [auc].
# [hgboost] >method: xgb_clf
# [hgboost] >eval_metric: auc
# [hgboost] >greater_is_better: True
# [hgboost] >pos_label: True
# [hgboost] >Total dataset: (891, 204) 
# [hgboost] >Hyperparameter optimization..
#  100% |----| 500/500 [04:39<05:21,  1.33s/trial, best loss: -0.8800619834710744]
# [hgboost] >Best performing [xgb_clf] model: auc=0.881198
# [hgboost] >5-fold cross validation for the top 10 scoring models, Total nr. tests: 50
# 100%|██████████| 10/10 [00:42<00:00,  4.27s/it]
# [hgboost] >Evalute best [xgb_clf] model on independent validation dataset (179 samples, 20.00%).
# [hgboost] >[auc] on independent validation dataset: -0.832
# [hgboost] >Retrain [xgb_clf] on the entire dataset with the optimal parameters settings.
# Plot searched parameter space 
hgb.plot_params()

# Plot summary results
hgb.plot()

# Plot the best tree
hgb.treeplot()

# Plot the validation results
hgb.plot_validation()

# Plot the cross-validation results
hgb.plot_cv()

# use the learned model to make new predictions.
y_pred, y_proba = hgb.predict(X)

Create ensemble model for Classification

from hgboost import hgboost

hgb = hgboost(max_eval=100, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=None, verbose=3)

# Import data
df = hgb.import_example()
y = df['Survived'].values
del df['Survived']
X = hgb.preprocessing(df, verbose=0)

results = hgb.ensemble(X, y, pos_label=1)

# use the predictor
y_pred, y_proba = hgb.predict(X)

Create ensemble model for Regression

from hgboost import hgboost

hgb = hgboost(max_eval=100, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=None, verbose=3)

# Import data
df = hgb.import_example()
y = df['Age'].values
del df['Age']
I = ~np.isnan(y)
X = hgb.preprocessing(df, verbose=0)
X = X.loc[I,:]
y = y[I]

results = hgb.ensemble(X, y, methods=['xgb_reg','ctb_reg','lgb_reg'])

# use the predictor
y_pred, y_proba = hgb.predict(X)
# Plot the ensemble classification validation results
hgb.plot_validation()

References

* http://hyperopt.github.io/hyperopt/
* https://github.com/dmlc/xgboost
* https://github.com/microsoft/LightGBM
* https://github.com/catboost/catboost

Maintainers

Contribute

  • Contributions are welcome.

Licence See LICENSE for details.

Coffee

  • If you wish to buy me a Coffee for this work, it is very appreciated :)
Comments
  • import error during import hgboost

    import error during import hgboost

    When I finished installation of hgboost and try to import hgboost,there is something wrong,could you please help me out? Details are as follows:

    ImportError Traceback (most recent call last) in ----> 1 from hgboost import hgboost

    C:\ProgramData\Anaconda3\lib\site-packages\hgboost_init_.py in ----> 1 from hgboost.hgboost import hgboost 2 3 from hgboost.hgboost import ( 4 import_example, 5 )

    C:\ProgramData\Anaconda3\lib\site-packages\hgboost\hgboost.py in 9 import classeval as cle 10 from df2onehot import df2onehot ---> 11 import treeplot as tree 12 import colourmap 13

    C:\ProgramData\Anaconda3\lib\site-packages\treeplot_init_.py in ----> 1 from treeplot.treeplot import ( 2 plot, 3 randomforest, 4 xgboost, 5 lgbm,

    C:\ProgramData\Anaconda3\lib\site-packages\treeplot\treeplot.py in 14 import numpy as np 15 from sklearn.tree import export_graphviz ---> 16 from sklearn.tree.export import export_text 17 from subprocess import call 18 import matplotlib.image as mpimg

    ImportError: cannot import name 'export_text' from 'sklearn.tree.export'

    thanks a lot!

    opened by recherHE 3
  • Test:Validation:Train split

    Test:Validation:Train split

    Shouldn't be the new test-train split be test_size=self.test_size/(1-self.val_size) in def _HPOpt(self):. We updated the shape of X in _set_validation_set(self, X, y)

    I'm assuming that the test, train, and validation set ratios are defined on the original data.

    opened by SSLPP 3
  • Treeplot failure - missing graphviz dependency

    Treeplot failure - missing graphviz dependency

    I'm running through the example classification notebook now, and the treeplot fails to render, with the following warning:

    Screen Shot 2022-10-04 at 14 30 21

    It seems that graphviz being a compiled c library is not bundled in pip (it is included in conda install treeplot/graphviz though).

    Since we have no recourse to add this to pip requirements, maybe a sentence in the Instalation instructions warning that graphviz must already be available and/or installed separately.

    (note the suggested apt command for linux is not entirely necessary, because pydot does get installed with treeplot via pip)

    opened by ninjit 2
  • Getting the native model for compatibility with shap.TreeExplainer

    Getting the native model for compatibility with shap.TreeExplainer

    Hello, first of all really nice project. I've just found out about it today and started playing with it a little bit. Is there any way to get the trained model as an XGBoost, LightGBM or CatBoost class in order to fit a shap.TreeExplainer instance to it?

    Thanks in advance! -Nicolás

    opened by nicolasaldecoa 2
  • Xgboost parameter

    Xgboost parameter

    After using the code hgb.plot_params(), the parameter of learning rate is 796. I don't think it's reasonable. Can I see the model parameters optimized by using HyperOptimized parameters?

    QQ截图20210705184733

    opened by LAH19999 2
  • HP Tuning: best_model uses different parameters from those that were reported as best ones

    HP Tuning: best_model uses different parameters from those that were reported as best ones

    I used hgboost for optimizing the hyper-parameters of my XGBoost model as described in the API References with the following parameters:

    hgb = hgboost()
    results = hgb.xgboost(X_train, y_train, pos_label=1, method='xgb_clf', eval_metric='logloss')
    

    As noted in the documentation, results is a dictionary that, among other things, returns the best performing parameters (best_params) and the best performing model (model). However, the parameters that the best performing model uses are different from what the function returns as best_params:

    best_params

    'params': {'colsample_bytree': 0.47000000000000003,
      'gamma': 1,
      'learning_rate': 534,
      'max_depth': 49,
      'min_child_weight': 3.0,
      'n_estimators': 36,
      'subsample': 0.96}
    

    model

    'model': XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                   colsample_bynode=1, colsample_bytree=0.47000000000000003,
                   enable_categorical=False, gamma=1, gpu_id=-1,
                   importance_type=None, interaction_constraints='',
                   learning_rate=0.058619090164329916, max_delta_step=0,
                   max_depth=54, min_child_weight=3.0, missing=nan,
                   monotone_constraints='()', n_estimators=200, n_jobs=-1,
                   num_parallel_tree=1, predictor='auto', random_state=0,
                   reg_alpha=0, reg_lambda=1, scale_pos_weight=0.5769800646551724,
                   subsample=0.96, tree_method='exact', validate_parameters=1,
                   verbosity=0),
    

    As you can see, for example, max_depth=49 in the best_params, but the model uses max_depth=54 etc.

    Is this a bug or the intended behavior? In case of the latter, I'd really appreciate an explanation!

    My setup:

    • OS: WSL (Ubuntu)
    • Python: 3.9.7
    • hgboost: 1.0.0
    opened by Mikki99 1
  • Running regression example error

    Running regression example error

    opened by recherHE 1
  • Error in rmse calculaiton

    Error in rmse calculaiton

    if self.eval_metric=='rmse':
                    loss = mean_squared_error(y_test, y_pred)
    

    mean_squared_error in sklearn gives mse, use mean_squared_error(y_true, y_pred, squared=False) for rmse

    opened by SSLPP 1
  • numpy.AxisError: axis 1 is out of bounds for array of dimension 1

    numpy.AxisError: axis 1 is out of bounds for array of dimension 1

    When eval_metric is auc, it raises an error. The related line is hgboost.py:906 and the related issue is: https://stackoverflow.com/questions/61288972/axiserror-axis-1-is-out-of-bounds-for-array-of-dimension-1-when-calculating-auc

    opened by quancore 0
  • ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].

    ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].

    There is an error when f1 score is used for multı-class classification. The error of line is on hgboost.py:904 while calculating f1 score, average param default is binary which is not suitable for multi-class.

    opened by quancore 0
Releases(1.1.3)
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022