Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

Overview

logo


**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.**



Sections



[Download a PDF version] of this flowchart.






Introduction to Machine Learning and Pattern Classification

[back to top]

  • Predictive modeling, supervised machine learning, and pattern classification - the big picture [Markdown]

  • Entry Point: Data - Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses [IPython nb]

  • An Introduction to simple linear supervised classification using scikit-learn [IPython nb]






Pre-processing

[back to top]

  • Feature Extraction

    • Tips and Tricks for Encoding Categorical Features in Classification Tasks [IPython nb]
  • Scaling and Normalization

    • About Feature Scaling: Standardization and Min-Max-Scaling (Normalization) [IPython nb]
  • Feature Selection

    • Sequential Feature Selection Algorithms [IPython nb]
  • Dimensionality Reduction

    • Principal Component Analysis (PCA) [IPython nb]
    • The effect of scaling and mean centering of variables prior to a PCA [PDF] [HTML]
    • PCA based on the covariance vs. correlation matrix [IPython nb]
    • Linear Discriminant Analysis (LDA) [IPython nb]
      • Kernel tricks and nonlinear dimensionality reduction via PCA [IPython nb]
  • Representing Text

    • Tf-idf Walkthrough for scikit-learn [IPython nb]



Model Evaluation

[back to top]

  • An Overview of General Performance Metrics of Binary Classifier Systems [PDF]
  • Cross-validation
    • Streamline your cross-validation workflow - scikit-learn's Pipeline in action [IPython nb]
  • Model evaluation, model selection, and algorithm selection in machine learning - Part I [Markdown]
  • Model evaluation, model selection, and algorithm selection in machine learning - Part II [Markdown]



Parameter Estimation

[back to top]

  • Parametric Techniques

    • Introduction to the Maximum Likelihood Estimate (MLE) [IPython nb]
    • How to calculate Maximum Likelihood Estimates (MLE) for different distributions [IPython nb]
  • Non-Parametric Techniques

    • Kernel density estimation via the Parzen-window technique [IPython nb]
    • The K-Nearest Neighbor (KNN) technique
  • Regression Analysis

    • Linear Regression

    • Non-Linear Regression




Machine Learning Algorithms

[back to top]

Bayes Classification

  • Naive Bayes and Text Classification I - Introduction and Theory [PDF]

Logistic Regression

  • Out-of-core Learning and Model Persistence using scikit-learn [IPython nb]

Neural Networks

  • Artificial Neurons and Single-Layer Neural Networks - How Machine Learning Algorithms Work Part 1 [IPython nb]

  • Activation Function Cheatsheet [IPython nb]

Ensemble Methods

  • Implementing a Weighted Majority Rule Ensemble Classifier in scikit-learn [IPython nb]

Decision Trees

  • Cheatsheet for Decision Tree Classification [IPython nb]



Clustering

[back to top]

  • Protoype-based clustering
  • Hierarchical clustering
    • Complete-Linkage Clustering and Heatmaps in Python [IPython nb]
  • Density-based clustering
  • Graph-based clustering
  • Probabilistic-based clustering



Collecting Data

[back to top]

  • Collecting Fantasy Soccer Data with Python and Beautiful Soup [IPython nb]

  • Download Your Twitter Timeline and Turn into a Word Cloud Using Python [IPython nb]

  • Reading MNIST into NumPy arrays [IPython nb]




Data Visualization

[back to top]

  • Exploratory Analysis of the Star Wars API [IPython nb]

  • Matplotlib examples -Exploratory data analysis of the Iris dataset [IPython nb]

  • Artificial Intelligence publications per country

[IPython nb] [PDF]




Statistical Pattern Classification Examples

[back to top]

  • Supervised Learning

    • Parametric Techniques

      • Univariate Normal Density

        • Ex1: 2-classes, equal variances, equal priors [IPython nb]
        • Ex2: 2-classes, different variances, equal priors [IPython nb]
        • Ex3: 2-classes, equal variances, different priors [IPython nb]
        • Ex4: 2-classes, different variances, different priors, loss function [IPython nb]
        • Ex5: 2-classes, different variances, equal priors, loss function, cauchy distr. [IPython nb]
      • Multivariate Normal Density

        • Ex5: 2-classes, different variances, equal priors, loss function [IPython nb]
        • Ex7: 2-classes, equal variances, equal priors [IPython nb]
    • Non-Parametric Techniques




Books

[back to top]

Python Machine Learning




Talks

[back to top]

An Introduction to Supervised Machine Learning and Pattern Classification: The Big Picture

[View on SlideShare]

[Download PDF]



MusicMood - Machine Learning in Automatic Music Mood Prediction Based on Song Lyrics

[View on SlideShare]

[Download PDF]




Applications

[back to top]

MusicMood - Machine Learning in Automatic Music Mood Prediction Based on Song Lyrics

This project is about building a music recommendation system for users who want to listen to happy songs. Such a system can not only be used to brighten up one's mood on a rainy weekend; especially in hospitals, other medical clinics, or public locations such as restaurants, the MusicMood classifier could be used to spread positive mood among people.

[musicmood GitHub Repository]


mlxtend - A library of extension and helper modules for Python's data analysis and machine learning libraries.

[mlxtend GitHub Repository]




Resources

[back to top]

  • Copy-and-paste ready LaTex equations [Markdown]

  • Open-source datasets [Markdown]

  • Free Machine Learning eBooks [Markdown]

  • Terms in data science defined in less than 50 words [Markdown]

  • Useful libraries for data science in Python [Markdown]

  • General Tips and Advices [Markdown]

  • A matrix cheatsheat for Python, R, Julia, and MATLAB [HTML]

Owner
Sebastian Raschka
Machine Learning researcher & passionate open source contributor. Author of the "Python Machine Learning" book.
Sebastian Raschka
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023