Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Overview

Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2004 a 2021 obtidos a partir do seguinte dataset do Kaggle.

Tecnologias

  • Python 3
  • Jupyter Notebook
  • Pandas
  • NumPy
  • Matplotlib
  • Seaborn
  • Scikit-Learn
  • Requests
  • REST API Call (Github API)

Algoritmos

  • Regressão Linear

Inicialmente, serão visualizados dados de séries temporais e regressão linear.

Tratamento de dados

df = pd.read_csv('Most Popular Programming Languages from 2004 to 2021 V4.csv')

def createDataFrameFor(df, colunas, colunaAtual):
    return pd.DataFrame(
        {
            'Date': df.Date,
            'Timestamp': map(lambda i : datetime.strptime(df["Date"][i], '%B %Y'), range(len(df.Date))),
            'Language': colunas[colunaAtual],
            'Value': df[df.columns[colunaAtual]]
        }
    )

colunas = df.columns

dados_tratados = createDataFrameFor(df, colunas, 1)

for coluna in range(1, len(colunas)):
    dados_tratados = pd.concat([dados_tratados, createDataFrameFor(df, colunas, coluna)])

dados_tratados.reset_index(drop=True, inplace=True)

dados_tratados['UnixTime'] = list(map(lambda i: (pd.to_datetime([dados_tratados['Timestamp'][i]]).astype(int) / 10**9)[0], range(len(dados_tratados['Date']))))

Visualização dos dados

df_java = dados_tratados[dados_tratados['Language'] == 'Java']
sns.regplot(x="UnixTime", y="Value", data= df_java)
plt.gcf().set_size_inches(16, 6)
plt.ylabel('% de uso da linguagem Java')
plt.xlabel('Anos em Unix Time de 2004 a 2021')
plt.show()

X = df_java.UnixTime.values.reshape(-1, 1)
y = df_java.Value.values.reshape(-1, 1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

reg = linear_model.LinearRegression()
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)

plt.scatter(X_test, y_test,  color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=3)

plt.gcf().set_size_inches(16, 6)

plt.ylabel('% de uso da linguagem Java')
plt.xlabel('Anos em Unix Time de 2004 a 2021')

plt.show()

Plots gerados

  • Regressão Linear com Seaborn (SNS):

Seaborn

  • Regressão Linear com Scikit-Learn (LinearRegression) e Matplotlib:

Matplotlib ScikitLearn

Plots de evolução das linguagens Java, Javascript, Python, C#, PHP, Delphi, Dart e Cobol nos últimos 17 anos

dados = df

dados['Date'] = pd.to_datetime(dados['Date'])
dados.set_index('Date', inplace = True) 

fig, axes = plt.subplots(nrows=4, ncols=2)

dados['Java'].plot(ax=axes[0,0], title = "Análise da linguagem Java nos últimos 17 anos")
dados['JavaScript'].plot(ax=axes[1,0], title = "Análise da linguagem JavaScript nos últimos 17 anos")
dados['Python'].plot(ax=axes[0,1], title = "Análise da linguagem Python nos últimos 17 anos")
dados['C#'].plot(ax=axes[1,1], title = "Análise da linguagem C# nos últimos 17 anos")
dados['PHP'].plot(ax=axes[2,0], title = "Análise da linguagem PHP nos últimos 17 anos")
dados['Delphi'].plot(ax=axes[2,1], title = "Análise da linguagem Delphi nos últimos 17 anos")
dados['Dart'].plot(ax=axes[3,0], title = "Análise da linguagem Dart nos últimos 17 anos")
dados['Cobol'].plot(ax=axes[3,1], title = "Análise da linguagem Cobol nos últimos 17 anos")

plt.gcf().set_size_inches(16, 22)

plt.show()

17 anos

Autor

  • Victor Hugo Negrisoli
  • Desenvolvedor Back-End Sênior | Analista de Dados
Owner
Victor Hugo Negrisoli
Cientista da Computação (UniFil), cursando pós em Data Science (PUC-MG), experiência em Java, Javascript e Python. Atuo como Desenvolvedor Back-End na Ilegra
Victor Hugo Negrisoli
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023