CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

Overview

CorrProxies

Declaration

This repo is for paper: Optimizing Machine Learning Inference Queries with Correlative Proxy Models.

Setup ENV

Quick Start

  1. We provide a fully ready Docker Image ready to use out-of-box.
  2. Optionally, you can also follow the steps to build your own testing environment.

The Provided Docker Environment

Steps to run the Docker Environment

  • Get the docker image from this link.
  • Load the docker image. docker load -i corrproxies-image.tar
  • Run the docker image in a container. docker run --name=CorrProxies -i -t -d corrproxies-image
    • it will return you the docker container ID, for example d979af9a17f23345cb2894b22dc8527680acdfd7a7e1aaed6a7a28ea134e66e6.
  • Use CLI to control the container with the specific ID generated. docker exec -it d979af9a17f23345cb2894b22dc8527680acdfd7a7e1aaed6a7a28ea134e66e6 /bin/zsh

ENV Spec

File structure:

  • The home directory for CorrProxies locates at /home/CorrProxies.
  • The Python executable locates at /home/anaconda3/envs/condaenv/bin/python3.
  • The models locate at /home/CorrProxies/model.
  • The datasets locate at /home/CorrProxies/data.
  • The starting scripts locate at /home/CorrProxies/scripts.

Build Your Own Environment

This instruction is based on a clean distribution of [email protected]

  1. Install pre-requisites.

    apt-get update && apt-get install -y build-essential

  2. Install Anaconda.

    • wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.sh && bash Anaconda3-5.3.1-Linux-x86_64.sh -b -p
    • export PATH=" /bin/:$PATH"
  3. Install [email protected] with Anaconda3.

    conda create -n condaenv python=3.6.6

  4. Activate the newly installed Python ENV.

    conda activate condaenv

  5. Install dependencies with pip.

    pip3 install -r requirements.txt

  6. Install Java (openjdk-8) (for standford-nlp usage).

    apt-get install -y openjdk-8-jdk

Queries & Datasets

  • We use Twitter text dataset, COCO image dataset and UCF101 video dataset as our benchmark datasets. Please see this page for examples of detailed Queries and Datasets examples we use in our experiments.

  • After you setup the environment, either manually or using the docker image provided by us, the next step is to download the datasets.

    • To get the COCO dataset: cd /home/CorrProxies/data/image/coco && ./get_coco_dataset.sh
    • To get the UCF101 dataset: cd /home/CorrProxies/data/video/ucf101 && wget -c https://www.crcv.ucf.edu/data/UCF101/UCF101.rar && unrar x UCF101.rar.

Execution

Please pull the latest code before executing the code. Command cd /home/CorrProxies && git pull

Run Operators Individually

To run and see each operator we used in our experiment, simply execute python3 . For example: python3 operators/ml_operators/image_video_operators/video_activity_recognition.py.

Run Experiments

We use scripts/run.sh to start experiments. The script will take in command line arguments.

  • Text(Twitter)

    • Since we do not provide text dataset, we will skip the experiment.
  • Image(COCO)

    Example: ./scripts/run.sh -w 2 -t 1 -i '1' -a 0.9 -s 3 -o 2 -e 1

  • Video(UCF101)

    Example: ./scripts/run.sh -w 2 -t 2 -i '1' -a 0.9 -s 3 -o 2 -e 1

  • arguments detail.

    • w int: experiment type in [1, 2, 3, 4] referring to /home/CorrProxies/ml_workflow/exps/WorkflowExp*.py;
    • t int: query type in [0, 1, 2]. Int 0, 1, 2 means queries on the Twitter, COCO, and UCF101 datasets, respectively;
    • i int: query index in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    • a float: query accuracy;
    • s int: scheme in [0, 1, 2, 3, 4, 5, 6]. Int 0, 1, 2, 3, 4, 5, 6 means 'ORIG', 'NS', 'PP', 'CORE', 'COREa', 'COREh' and 'REORDER' schemes, respectively;
    • o int: number of threads used in optimization phase;
    • e int: number of threads used in execution phase after generating an optimized plan.
Owner
ZhihuiYangCS
ZhihuiYangCS
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022