Price forecasting of SGB and IRFC Bonds and comparing there returns

Overview

Project_Bonds

Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns.

Introduction of the Project

The 2008-09 global financial crises and 2020-21 pandemic have shown us the volatility of the market. Many people have are finding a way to invest money to secure their future. People are trying to find a secure investment with minimum financial risks with higher returns. This is also a fact that with investment their also comes with risks. There is a saying in the world of investment “Do not put all your egg in one basket”. We need to diverse portfolio in the area of investment, so that if one investment does not give you enough yields due to fluctuations in the market rates then other will give you higher yield. Bonds are one such investment people prefer the most. The Bonds we have selected are two government bonds – SGB (Sovereign Gold Bond) and IRFC (Indian Railway Finance Corporation). The objective was to forecast the prices of SGB and IRFC bond and calculate the returns. Compare the returns and recommend the client which one to pick based on the input that is number of years to forecast.

Technologies Used

  • Python – ML model (auto_arima (for grid search to find p,q,d values), ARIMA(for forecasting values))
  • SQLite – Database
  • Flask – Front End for deployment
  • Python Libraries – numpy, pandas, Statsmodels, re, nsepy, matplotlib
  • HTML/CSS

General info

This project is simple Forecasting model. Not taxes were put into use when calculating returns. IRFC Bond is a tax free bond but SGB we need to pay taxes if we try to sell it before the maturity period is over. Inflation rate and global pandemic situation is a rare phenonmenon and it is beyond anyone's control. It has been taken into business restriction.
Data has been collected from National Stock exchange of India The two bonds selected from NSE was -

Requirement file (contains libraries and their versions)

Libraries Used

Project Architecture

alt text

Explaining Project Architecture

Live data extraction

The data collected from NSE website (historical data) and the library which is used to collect live daily data from the website is nsepy. The data is then goes to python, two things happens in python. First, out of all the attributes, we only take "Close Price" and then the daily is then converted into monthly data. We use mean to calculate the the monthly average.

Data storage in sqlite

We chose SQLite because it is very easy to use and one does not need the knowledge of sql to observe the data. the database is created locally and and is being updated when the user usses the application. the user can easliy take the database and see the data in SQL viewr online available.

Data is then used by the model

When data is then called back by the python. the python then perform differencing method to remove the trend and seasonality from the data so that our data can be stable. For successful forecasting, it is necessary to keepp the time series data to be stationary.

p,d,q Hyperparameters

We use auto_arima function to calculate p,d,q value. We use re(regex) to store the summary of auto_arima in string format. then use "re.findall()" funtion to collect the value of p,d,q values. The downpoint of using this auto_arima function is that it runs two times when the programes gets executed. It calculate the hyperparameter values for both SGB and IRFC data.

ARIMA

This part is where the data is taken and then fit & predict.
This is for 12 months. Actual Data vs Predicted Data

Model Evaluation

SGB

The RMSE: 93.27 Rs. & The MAPE: 0.0185

IRFC

The RMSE: 21.62 Rs. & The MAPE: 0.0139
(Pretty Good)

Forecasting (12 Months)

Forecasted Data (12 Months)

Returns

This is the part where both SGB and IRFC foecasted data is being collected and based on that returns are calculated. If the SGB returns is higher than IRFC bonds then it will tell the customer about the amount of return for a specific time period.

User Input

The user will be given 3 options as Input. The user will select a specific time period from a drop down list. The options are -

  1. 4 Months (Quaterly)
  2. 6 Months (Half yearly)
  3. 12 Months (Anually)
    This options are time pperiod to forecast. If the user press 6 then the output page will show "6" forecasted values with a range Upper Price, Forecasted Price, Lower Price for both the bonds side by side. Below there will be a text where the returns will be diplayed if the user decides to sell the bonds then.
    12 Months Forecasted Prices - forecasted_prices

Python_code

correlation matrix fig=plt.gcf() fig.set_size_inches(10,8) plt.show() heatmap(gold) heatmap(bond) ############################### Live data to Feature engineering ################################################3 ##Taking close price as our univariate variable ##For gold gold=pd.DataFrame(gold["Close"]) gold["date"]=gold.index gold["date"]=gold['date'].astype(str) gold[["year", "month", "day"]] = gold["date"].str.split(pat="-", expand=True) gold['Dates'] = gold['month'].str.cat(gold['year'], sep ="-") gold.Dates=pd.to_datetime(gold.Dates) gold.set_index('Dates',inplace=True) col_sgb=pd.DataFrame(gold.groupby(gold.index).Close.mean()) ##For bond bond=pd.DataFrame(bond["Close"]) bond["date"]=bond.index bond["date"]=bond['date'].astype(str) bond[["year", "month", "day"]] = bond["date"].str.split(pat="-", expand=True) bond['Dates'] = bond['month'].str.cat(bond['year'], sep ="-") bond.Dates=pd.to_datetime(bond.Dates) bond.set_index('Dates',inplace=True) col_bond=pd.DataFrame(bond.groupby(bond.index).Close.mean()) col_sgb.columns = ["Avg_price"] col_bond.columns = ["Avg_price"] col_bond.isnull().sum() col_sgb.isnull().sum() ############################ SQL connection with monthly data ################################################ ############################### SQL database is created ################################################3 # Connect to the database from sqlalchemy import create_engine engine_sgb = create_engine('sqlite:///gold_database.db', echo=False) col_sgb.to_sql('SGB', con=engine_sgb,if_exists='replace') df_sgb = pd.read_sql('select * from SGB',engine_sgb ) df_sgb.Dates=pd.to_datetime(df_sgb.Dates) df_sgb.set_index('Dates',inplace=True) engine_irfcb = create_engine('sqlite:///irfcb_database.db', echo=False) col_bond.to_sql('IRFCB', con=engine_irfcb,if_exists='replace') df_bond = pd.read_sql('select * from IRFCB',engine_irfcb) df_bond.Dates=pd.to_datetime(df_bond.Dates) df_bond.set_index('Dates',inplace=True) ############################### SQL data to python ################################################3 # Plotting def plotting_bond(y): fig, ax = plt.subplots(figsize=(20, 6)) ax.plot(y,marker='.', linestyle='-', linewidth=0.5, label='Monthly Average') ax.plot(y.resample('Y').mean(),marker='o', markersize=8, linestyle='-', label='Yearly Mean Resample') ax.set_ylabel('Avg_price') ax.legend(); plotting_bond(df_sgb) plotting_bond(df_bond) #univariate analysis of Average Price df_sgb.hist(bins = 50) df_bond.hist(bins = 50) # check Stationary and adf test def test_stationarity(timeseries): #Determing rolling statistics rolmean = timeseries.rolling(12).mean() rolstd = timeseries.rolling(12).std() #Plot rolling statistics: fig, ax = plt.subplots(figsize=(16, 4)) ax.plot(timeseries, label = "Original Price") ax.plot(rolmean, label='rolling mean'); ax.plot(rolstd, label='rolling std'); plt.legend(loc='best') plt.title('Rolling Mean and Standard Deviation - Removed Trend and Seasonality') plt.show(block=False) print("Results of dickey fuller test") adft = adfuller(timeseries,autolag='AIC') print('Test statistic = {:.3f}'.format(adft[0])) print('P-value = {:.3f}'.format(adft[1])) print('Critical values :') for k, v in adft[4].items(): print('\t{}: {} - The data is {} stationary with {}% confidence'.format(k, v, 'not' if v y: a = print("The retrun of SGB is {a} and the return of IRFC Bond is {b} after {c} months".format(a=x,b=y,c=t)) else: a = print("The return of IRFC Bond is{a} and the return of SGB Bond is {b} after {c} months".format(a=x,b=y,c=t)) return a output_(gain_sgb,gain_bond, n) ">
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pylab import rcParams
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.arima.model import ARIMA
from pmdarima.arima import auto_arima
from sklearn.metrics import mean_squared_error
import math
import re
from datetime import date
import nsepy 
import warnings
warnings.filterwarnings("ignore")
####################################          Live data extraction              ###################################################
##Extracting data from nsepy package
da=date.today()
gold= pd.DataFrame(nsepy.get_history(symbol="SGBAUG24",series="GB", start=date(2016,9,1), end=da))
bond= pd.DataFrame(nsepy.get_history(symbol="IRFC",series="N2", start=date(2012,1,1), end=da))

#############################                 Live data  extraction end                  ###############################################

# Heatmap - to check collinearity
def heatmap(x):
    plt.figure(figsize=(16,16))
    sns.heatmap(x.corr(),annot=True,cmap='Blues',linewidths=0.2) #data.corr()-->correlation matrix
    fig=plt.gcf()
    fig.set_size_inches(10,8)
    plt.show()
heatmap(gold)
heatmap(bond)
###############################                Live data to Feature engineering            ################################################3             

##Taking close price as our univariate variable
##For gold
gold=pd.DataFrame(gold["Close"])
gold["date"]=gold.index
gold["date"]=gold['date'].astype(str)
gold[["year", "month", "day"]] = gold["date"].str.split(pat="-", expand=True)
gold['Dates'] = gold['month'].str.cat(gold['year'], sep ="-")
gold.Dates=pd.to_datetime(gold.Dates)
gold.set_index('Dates',inplace=True)
col_sgb=pd.DataFrame(gold.groupby(gold.index).Close.mean())

##For bond
bond=pd.DataFrame(bond["Close"])
bond["date"]=bond.index
bond["date"]=bond['date'].astype(str)
bond[["year", "month", "day"]] = bond["date"].str.split(pat="-", expand=True)
bond['Dates'] = bond['month'].str.cat(bond['year'], sep ="-")
bond.Dates=pd.to_datetime(bond.Dates)
bond.set_index('Dates',inplace=True)
col_bond=pd.DataFrame(bond.groupby(bond.index).Close.mean())

col_sgb.columns = ["Avg_price"]
col_bond.columns = ["Avg_price"]

col_bond.isnull().sum()
col_sgb.isnull().sum()

############################                  SQL connection with monthly data           ################################################ 
###############################                SQL database is created                  ################################################3             

# Connect to the database
from sqlalchemy import create_engine
engine_sgb = create_engine('sqlite:///gold_database.db', echo=False)
col_sgb.to_sql('SGB', con=engine_sgb,if_exists='replace')
df_sgb = pd.read_sql('select * from SGB',engine_sgb )

df_sgb.Dates=pd.to_datetime(df_sgb.Dates)
df_sgb.set_index('Dates',inplace=True)


engine_irfcb = create_engine('sqlite:///irfcb_database.db', echo=False)
col_bond.to_sql('IRFCB', con=engine_irfcb,if_exists='replace')
df_bond = pd.read_sql('select * from IRFCB',engine_irfcb)

df_bond.Dates=pd.to_datetime(df_bond.Dates)
df_bond.set_index('Dates',inplace=True)
###############################                SQL data to python                 ################################################3             



# Plotting
def plotting_bond(y):
    fig, ax = plt.subplots(figsize=(20, 6))
    ax.plot(y,marker='.', linestyle='-', linewidth=0.5, label='Monthly Average')
    ax.plot(y.resample('Y').mean(),marker='o', markersize=8, linestyle='-', label='Yearly Mean Resample')
    ax.set_ylabel('Avg_price')
    ax.legend();
plotting_bond(df_sgb)
plotting_bond(df_bond)

#univariate analysis of Average Price
df_sgb.hist(bins = 50)
df_bond.hist(bins = 50)

# check Stationary and adf test
def test_stationarity(timeseries):
    #Determing rolling statistics
    rolmean = timeseries.rolling(12).mean()
    rolstd = timeseries.rolling(12).std()
    #Plot rolling statistics:
    fig, ax = plt.subplots(figsize=(16, 4))
    ax.plot(timeseries, label = "Original Price")
    ax.plot(rolmean, label='rolling mean');
    ax.plot(rolstd, label='rolling std');
    plt.legend(loc='best')
    plt.title('Rolling Mean and Standard Deviation - Removed Trend and Seasonality')
    plt.show(block=False)
    
    print("Results of dickey fuller test")
    adft = adfuller(timeseries,autolag='AIC')
    print('Test statistic = {:.3f}'.format(adft[0]))
    print('P-value = {:.3f}'.format(adft[1]))
    print('Critical values :')
    for k, v in adft[4].items():
        print('\t{}: {} - The data is {} stationary with {}% confidence'.format(k, v, 'not' if v
    
      y:
        a = print("The retrun of SGB is {a} and the return of IRFC Bond is {b} after {c} months".format(a=x,b=y,c=t))
    else:
        a = print("The return of IRFC Bond is{a} and the return of SGB Bond is {b} after {c} months".format(a=x,b=y,c=t))
    return a
output_(gain_sgb,gain_bond, n)

    

Home Page (Used HTML and CSS)

home

Predict Page

predict

Output Page

output

Project Completed --

Owner
Tishya S
Data Science aspirant
Tishya S
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023