Price forecasting of SGB and IRFC Bonds and comparing there returns

Overview

Project_Bonds

Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns.

Introduction of the Project

The 2008-09 global financial crises and 2020-21 pandemic have shown us the volatility of the market. Many people have are finding a way to invest money to secure their future. People are trying to find a secure investment with minimum financial risks with higher returns. This is also a fact that with investment their also comes with risks. There is a saying in the world of investment “Do not put all your egg in one basket”. We need to diverse portfolio in the area of investment, so that if one investment does not give you enough yields due to fluctuations in the market rates then other will give you higher yield. Bonds are one such investment people prefer the most. The Bonds we have selected are two government bonds – SGB (Sovereign Gold Bond) and IRFC (Indian Railway Finance Corporation). The objective was to forecast the prices of SGB and IRFC bond and calculate the returns. Compare the returns and recommend the client which one to pick based on the input that is number of years to forecast.

Technologies Used

  • Python – ML model (auto_arima (for grid search to find p,q,d values), ARIMA(for forecasting values))
  • SQLite – Database
  • Flask – Front End for deployment
  • Python Libraries – numpy, pandas, Statsmodels, re, nsepy, matplotlib
  • HTML/CSS

General info

This project is simple Forecasting model. Not taxes were put into use when calculating returns. IRFC Bond is a tax free bond but SGB we need to pay taxes if we try to sell it before the maturity period is over. Inflation rate and global pandemic situation is a rare phenonmenon and it is beyond anyone's control. It has been taken into business restriction.
Data has been collected from National Stock exchange of India The two bonds selected from NSE was -

Requirement file (contains libraries and their versions)

Libraries Used

Project Architecture

alt text

Explaining Project Architecture

Live data extraction

The data collected from NSE website (historical data) and the library which is used to collect live daily data from the website is nsepy. The data is then goes to python, two things happens in python. First, out of all the attributes, we only take "Close Price" and then the daily is then converted into monthly data. We use mean to calculate the the monthly average.

Data storage in sqlite

We chose SQLite because it is very easy to use and one does not need the knowledge of sql to observe the data. the database is created locally and and is being updated when the user usses the application. the user can easliy take the database and see the data in SQL viewr online available.

Data is then used by the model

When data is then called back by the python. the python then perform differencing method to remove the trend and seasonality from the data so that our data can be stable. For successful forecasting, it is necessary to keepp the time series data to be stationary.

p,d,q Hyperparameters

We use auto_arima function to calculate p,d,q value. We use re(regex) to store the summary of auto_arima in string format. then use "re.findall()" funtion to collect the value of p,d,q values. The downpoint of using this auto_arima function is that it runs two times when the programes gets executed. It calculate the hyperparameter values for both SGB and IRFC data.

ARIMA

This part is where the data is taken and then fit & predict.
This is for 12 months. Actual Data vs Predicted Data

Model Evaluation

SGB

The RMSE: 93.27 Rs. & The MAPE: 0.0185

IRFC

The RMSE: 21.62 Rs. & The MAPE: 0.0139
(Pretty Good)

Forecasting (12 Months)

Forecasted Data (12 Months)

Returns

This is the part where both SGB and IRFC foecasted data is being collected and based on that returns are calculated. If the SGB returns is higher than IRFC bonds then it will tell the customer about the amount of return for a specific time period.

User Input

The user will be given 3 options as Input. The user will select a specific time period from a drop down list. The options are -

  1. 4 Months (Quaterly)
  2. 6 Months (Half yearly)
  3. 12 Months (Anually)
    This options are time pperiod to forecast. If the user press 6 then the output page will show "6" forecasted values with a range Upper Price, Forecasted Price, Lower Price for both the bonds side by side. Below there will be a text where the returns will be diplayed if the user decides to sell the bonds then.
    12 Months Forecasted Prices - forecasted_prices

Python_code

correlation matrix fig=plt.gcf() fig.set_size_inches(10,8) plt.show() heatmap(gold) heatmap(bond) ############################### Live data to Feature engineering ################################################3 ##Taking close price as our univariate variable ##For gold gold=pd.DataFrame(gold["Close"]) gold["date"]=gold.index gold["date"]=gold['date'].astype(str) gold[["year", "month", "day"]] = gold["date"].str.split(pat="-", expand=True) gold['Dates'] = gold['month'].str.cat(gold['year'], sep ="-") gold.Dates=pd.to_datetime(gold.Dates) gold.set_index('Dates',inplace=True) col_sgb=pd.DataFrame(gold.groupby(gold.index).Close.mean()) ##For bond bond=pd.DataFrame(bond["Close"]) bond["date"]=bond.index bond["date"]=bond['date'].astype(str) bond[["year", "month", "day"]] = bond["date"].str.split(pat="-", expand=True) bond['Dates'] = bond['month'].str.cat(bond['year'], sep ="-") bond.Dates=pd.to_datetime(bond.Dates) bond.set_index('Dates',inplace=True) col_bond=pd.DataFrame(bond.groupby(bond.index).Close.mean()) col_sgb.columns = ["Avg_price"] col_bond.columns = ["Avg_price"] col_bond.isnull().sum() col_sgb.isnull().sum() ############################ SQL connection with monthly data ################################################ ############################### SQL database is created ################################################3 # Connect to the database from sqlalchemy import create_engine engine_sgb = create_engine('sqlite:///gold_database.db', echo=False) col_sgb.to_sql('SGB', con=engine_sgb,if_exists='replace') df_sgb = pd.read_sql('select * from SGB',engine_sgb ) df_sgb.Dates=pd.to_datetime(df_sgb.Dates) df_sgb.set_index('Dates',inplace=True) engine_irfcb = create_engine('sqlite:///irfcb_database.db', echo=False) col_bond.to_sql('IRFCB', con=engine_irfcb,if_exists='replace') df_bond = pd.read_sql('select * from IRFCB',engine_irfcb) df_bond.Dates=pd.to_datetime(df_bond.Dates) df_bond.set_index('Dates',inplace=True) ############################### SQL data to python ################################################3 # Plotting def plotting_bond(y): fig, ax = plt.subplots(figsize=(20, 6)) ax.plot(y,marker='.', linestyle='-', linewidth=0.5, label='Monthly Average') ax.plot(y.resample('Y').mean(),marker='o', markersize=8, linestyle='-', label='Yearly Mean Resample') ax.set_ylabel('Avg_price') ax.legend(); plotting_bond(df_sgb) plotting_bond(df_bond) #univariate analysis of Average Price df_sgb.hist(bins = 50) df_bond.hist(bins = 50) # check Stationary and adf test def test_stationarity(timeseries): #Determing rolling statistics rolmean = timeseries.rolling(12).mean() rolstd = timeseries.rolling(12).std() #Plot rolling statistics: fig, ax = plt.subplots(figsize=(16, 4)) ax.plot(timeseries, label = "Original Price") ax.plot(rolmean, label='rolling mean'); ax.plot(rolstd, label='rolling std'); plt.legend(loc='best') plt.title('Rolling Mean and Standard Deviation - Removed Trend and Seasonality') plt.show(block=False) print("Results of dickey fuller test") adft = adfuller(timeseries,autolag='AIC') print('Test statistic = {:.3f}'.format(adft[0])) print('P-value = {:.3f}'.format(adft[1])) print('Critical values :') for k, v in adft[4].items(): print('\t{}: {} - The data is {} stationary with {}% confidence'.format(k, v, 'not' if v y: a = print("The retrun of SGB is {a} and the return of IRFC Bond is {b} after {c} months".format(a=x,b=y,c=t)) else: a = print("The return of IRFC Bond is{a} and the return of SGB Bond is {b} after {c} months".format(a=x,b=y,c=t)) return a output_(gain_sgb,gain_bond, n) ">
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pylab import rcParams
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.arima.model import ARIMA
from pmdarima.arima import auto_arima
from sklearn.metrics import mean_squared_error
import math
import re
from datetime import date
import nsepy 
import warnings
warnings.filterwarnings("ignore")
####################################          Live data extraction              ###################################################
##Extracting data from nsepy package
da=date.today()
gold= pd.DataFrame(nsepy.get_history(symbol="SGBAUG24",series="GB", start=date(2016,9,1), end=da))
bond= pd.DataFrame(nsepy.get_history(symbol="IRFC",series="N2", start=date(2012,1,1), end=da))

#############################                 Live data  extraction end                  ###############################################

# Heatmap - to check collinearity
def heatmap(x):
    plt.figure(figsize=(16,16))
    sns.heatmap(x.corr(),annot=True,cmap='Blues',linewidths=0.2) #data.corr()-->correlation matrix
    fig=plt.gcf()
    fig.set_size_inches(10,8)
    plt.show()
heatmap(gold)
heatmap(bond)
###############################                Live data to Feature engineering            ################################################3             

##Taking close price as our univariate variable
##For gold
gold=pd.DataFrame(gold["Close"])
gold["date"]=gold.index
gold["date"]=gold['date'].astype(str)
gold[["year", "month", "day"]] = gold["date"].str.split(pat="-", expand=True)
gold['Dates'] = gold['month'].str.cat(gold['year'], sep ="-")
gold.Dates=pd.to_datetime(gold.Dates)
gold.set_index('Dates',inplace=True)
col_sgb=pd.DataFrame(gold.groupby(gold.index).Close.mean())

##For bond
bond=pd.DataFrame(bond["Close"])
bond["date"]=bond.index
bond["date"]=bond['date'].astype(str)
bond[["year", "month", "day"]] = bond["date"].str.split(pat="-", expand=True)
bond['Dates'] = bond['month'].str.cat(bond['year'], sep ="-")
bond.Dates=pd.to_datetime(bond.Dates)
bond.set_index('Dates',inplace=True)
col_bond=pd.DataFrame(bond.groupby(bond.index).Close.mean())

col_sgb.columns = ["Avg_price"]
col_bond.columns = ["Avg_price"]

col_bond.isnull().sum()
col_sgb.isnull().sum()

############################                  SQL connection with monthly data           ################################################ 
###############################                SQL database is created                  ################################################3             

# Connect to the database
from sqlalchemy import create_engine
engine_sgb = create_engine('sqlite:///gold_database.db', echo=False)
col_sgb.to_sql('SGB', con=engine_sgb,if_exists='replace')
df_sgb = pd.read_sql('select * from SGB',engine_sgb )

df_sgb.Dates=pd.to_datetime(df_sgb.Dates)
df_sgb.set_index('Dates',inplace=True)


engine_irfcb = create_engine('sqlite:///irfcb_database.db', echo=False)
col_bond.to_sql('IRFCB', con=engine_irfcb,if_exists='replace')
df_bond = pd.read_sql('select * from IRFCB',engine_irfcb)

df_bond.Dates=pd.to_datetime(df_bond.Dates)
df_bond.set_index('Dates',inplace=True)
###############################                SQL data to python                 ################################################3             



# Plotting
def plotting_bond(y):
    fig, ax = plt.subplots(figsize=(20, 6))
    ax.plot(y,marker='.', linestyle='-', linewidth=0.5, label='Monthly Average')
    ax.plot(y.resample('Y').mean(),marker='o', markersize=8, linestyle='-', label='Yearly Mean Resample')
    ax.set_ylabel('Avg_price')
    ax.legend();
plotting_bond(df_sgb)
plotting_bond(df_bond)

#univariate analysis of Average Price
df_sgb.hist(bins = 50)
df_bond.hist(bins = 50)

# check Stationary and adf test
def test_stationarity(timeseries):
    #Determing rolling statistics
    rolmean = timeseries.rolling(12).mean()
    rolstd = timeseries.rolling(12).std()
    #Plot rolling statistics:
    fig, ax = plt.subplots(figsize=(16, 4))
    ax.plot(timeseries, label = "Original Price")
    ax.plot(rolmean, label='rolling mean');
    ax.plot(rolstd, label='rolling std');
    plt.legend(loc='best')
    plt.title('Rolling Mean and Standard Deviation - Removed Trend and Seasonality')
    plt.show(block=False)
    
    print("Results of dickey fuller test")
    adft = adfuller(timeseries,autolag='AIC')
    print('Test statistic = {:.3f}'.format(adft[0]))
    print('P-value = {:.3f}'.format(adft[1]))
    print('Critical values :')
    for k, v in adft[4].items():
        print('\t{}: {} - The data is {} stationary with {}% confidence'.format(k, v, 'not' if v
    
      y:
        a = print("The retrun of SGB is {a} and the return of IRFC Bond is {b} after {c} months".format(a=x,b=y,c=t))
    else:
        a = print("The return of IRFC Bond is{a} and the return of SGB Bond is {b} after {c} months".format(a=x,b=y,c=t))
    return a
output_(gain_sgb,gain_bond, n)

    

Home Page (Used HTML and CSS)

home

Predict Page

predict

Output Page

output

Project Completed --

Owner
Tishya S
Data Science aspirant
Tishya S
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021