PyTorch Implementation for Deep Metric Learning Pipelines

Overview

Easily Extendable Basic Deep Metric Learning Pipeline

Karsten Roth ([email protected]), Biagio Brattoli ([email protected])

When using this repo in any academic work, please provide a reference to

@misc{roth2020revisiting,
    title={Revisiting Training Strategies and Generalization Performance in Deep Metric Learning},
    author={Karsten Roth and Timo Milbich and Samarth Sinha and Prateek Gupta and Björn Ommer and Joseph Paul Cohen},
    year={2020},
    eprint={2002.08473},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Based on an extendend version of this repo, we have created a thorough comparison and evaluation of Deep Metric Learning:

https://arxiv.org/abs/2002.08473

The newly released code can be found here: https://github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch

It contains more criteria, miner, metrics and logging options!


For usage, go to section 3 - for results to section 4

1. Overview

This repository contains a full, easily extendable pipeline to test and implement current and new deep metric learning methods. For referencing and testing, this repo contains implementations/dataloaders for:

Loss Functions

Sampling Methods

Datasets

Architectures

NOTE: PKU Vehicle-ID is (optional) because there is no direct way to download the dataset, as it requires special licensing. However, if this dataset becomes available (in the structure shown in part 2.2), it can be used directly.


1.1 Related Repos:


2. Repo & Dataset Structure

2.1 Repo Structure

Repository
│   ### General Files
│   README.md
│   requirements.txt    
│   installer.sh
|
|   ### Main Scripts
|   Standard_Training.py     (main training script)
|   losses.py   (collection of loss and sampling impl.)
│   datasets.py (dataloaders for all datasets)
│   
│   ### Utility scripts
|   auxiliaries.py  (set of useful utilities)
|   evaluate.py     (set of evaluation functions)
│   
│   ### Network Scripts
|   netlib.py       (contains impl. for ResNet50)
|   googlenet.py    (contains impl. for GoogLeNet)
│   
│   
└───Training Results (generated during Training)
|    │   e.g. cub200/Training_Run_Name
|    │   e.g. cars196/Training_Run_Name
|
│   
└───Datasets (should be added, if one does not want to set paths)
|    │   cub200
|    │   cars196
|    │   online_products
|    │   in-shop
|    │   vehicle_id

2.2 Dataset Structures

CUB200-2011/CARS196

cub200/cars196
└───images
|    └───001.Black_footed_Albatross
|           │   Black_Footed_Albatross_0001_796111
|           │   ...
|    ...

Online Products

online_products
└───images
|    └───bicycle_final
|           │   111085122871_0.jpg
|    ...
|
└───Info_Files
|    │   bicycle.txt
|    │   ...

In-Shop Clothes

in-shop
└─img
|    └─MEN
|         └─Denim
|               └─id_00000080
|                  │   01_1_front.jpg
|                  │   ...
|               ...
|         ...
|    ...
|
└─Eval
|  │   list_eval_partition.txt

PKU Vehicle ID

vehicle_id
└───image
|     │   <img>.jpg
|     |   ...
|     
└───train_test_split
|     |   test_list_800.txt
|     |   ...

3. Using the Pipeline

[1.] Requirements

The pipeline is build around Python3 (i.e. by installing Miniconda https://conda.io/miniconda.html') and Pytorch 1.0.0/1. It has been tested around cuda 8 and cuda 9.

To install the required libraries, either directly check requirements.txt or create a conda environment:

conda create -n <Env_Name> python=3.6

Activate it

conda activate <Env_Name>

and run

bash installer.sh

Note that for kMeans- and Nearest Neighbour Computation, the library faiss is used, which can allow to move these computations to GPU if speed is desired. However, in most cases, faiss is fast enough s.t. the computation of evaluation metrics is no bottleneck.
NOTE: If one wishes not to use faiss but standard sklearn, simply use auxiliaries_nofaiss.py to replace auxiliaries.py when importing the libraries.

[2.] Exemplary Runs

The main script is Standard_Training.py. If running without input arguments, training of ResNet50 on CUB200-2011 with Marginloss and Distance-sampling is performed.
Otherwise, the following flags suffice to train with different losses, sampling methods, architectures and datasets:

python Standard_Training.py --dataset <dataset> --loss <loss> --sampling <sampling> --arch <arch> --k_vals <k_vals> --embed_dim <embed_dim>

The following flags are available:

  • <dataset> <- cub200, cars196, online_products, in-shop, vehicle_id
  • <loss> <- marginloss, triplet, npair, proxynca
  • <sampling> <- distance, semihard, random, npair
  • <arch> <- resnet50, googlenet
  • <k_vals> <- List of Recall @ k values to evaluate on, e.g. 1 2 4 8
  • <embed_dim> <- Network embedding dimension. Default: 128 for ResNet50, 512 for GoogLeNet.

For all other training-specific arguments (e.g. batch-size, num. training epochs., ...), simply refer to the input arguments in Standard_Training.py.

NOTE: If one wishes to use a different learning rate for the final linear embedding layer, the flag --fc_lr_mul needs to be set to a value other than zero (i.e. 10 as is done in various implementations).

Finally, to decide the GPU to use and the name of the training folder in which network weights, sample recoveries and metrics are stored, set:

python Standard_Training.py --gpu <gpu_id> --savename <name_of_training_run>

If --savename is not set, a default name based on the starting date will be chosen.

If one wishes to simply use standard parameters and wants to get close to literature results (more or less, depends on seeds and overall training scheduling), refer to sample_training_runs.sh, which contains a list of executable one-liners.

[3.] Implementation Notes regarding Extendability:

To extend or test other sampling or loss methods, simply do:

For Batch-based Sampling:
In losses.py, add the sampling method, which should act on a batch (and the resp. set of labels), e.g.:

def new_sampling(self, batch, label, **additional_parameters): ...

This function should, if it needs to run with existing losses, a list of tuples containing indexes with respect to the batch, e.g. for sampling methods returning triplets:

return [(anchor_idx, positive_idx, negative_idx) for anchor_idx, positive_idx, negative_idx in zip(anchor_idxs, positive_idxs, negative_idxs)]

Also, don't forget to add a handle in Sampler.__init__().

For Data-specific Sampling:
To influence the data samples used to generate the batches, in datasets.py edit BaseTripletDataset.

For New Loss Functions:
Simply add a new class inheriting from torch.nn.Module. Refer to other loss variants to see how to do so. In general, include an instance of the Sampler-class, which will provide sampled data tuples during a forward()-pass, by calling self.sampler_instance.give(batch, labels, **additional_parameters).
Finally, include the loss function in the loss_select()-function. Parameters can be passed through the dictionary-notation (see other examples) and if learnable parameters are added, include them in the to_optim-list.

[4.] Stored Data:

By default, the following files are saved:

Name_of_Training_Run
|  checkpoint.pth.tar   -> Contains network state-dict.
|  hypa.pkl             -> Contains all network parameters as pickle.
|                          Can be used directly to recreate the network.
| log_train_Base.csv    -> Logged training data as CSV.                      
| log_val_Base.csv      -> Logged test metrics as CSV.                    
| Parameter_Info.txt    -> All Parameters stored as readable text-file.
| InfoPlot_Base.svg     -> Graphical summary of training/testing metrics progression.
| sample_recoveries.png -> Sample recoveries for best validation weights.
|                          Acts as a sanity test.

Sample Recoveries Note: Red denotes query images, while green show the resp. nearest neighbours.

Sample Recoveries Note: The header in the summary plot shows the best testing metrics over the whole run.

[5.] Additional Notes:

To finalize, several flags might be of interest when examining the respective runs:

--dist_measure: If set, the ratio of mean intraclass-distances over mean interclass distances
                (by measure of center-of-mass distances) is computed after each epoch and stored/plotted.
--grad_measure: If set, the average (absolute) gradients from the embedding layer to the last
                conv. layer are stored in a Pickle-File. This can be used to examine the change of features during each iteration.

For more details, refer to the respective classes in auxiliaries.py.


4. Results

These results are supposed to be performance estimates achieved by running the respective commands in sample_training_runs.sh. Note that the learning rate scheduling might not be fully optimised, so these values should only serve as reference/expectation, not what can be ultimately achieved with more tweaking.

Note also that there is a not insignificant dependency on the used seed.

CUB200

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 2 -- 4 -- 8
ResNet50 Margin/Distance 68.2 38.7 63.4 -- 74.9 -- 86.0 -- 90.4
ResNet50 Triplet/Softhard 66.2 35.5 61.2 -- 73.2 -- 82.4 -- 89.5
ResNet50 NPair/None 65.4 33.8 59.0 -- 71.3 -- 81.1 -- 88.8
ResNet50 ProxyNCA/None 68.1 38.1 64.0 -- 75.4 -- 84.2 -- 90.5

Cars196

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 2 -- 4 -- 8
ResNet50 Margin/Distance 67.2 37.6 79.3 -- 87.1 -- 92.1 -- 95.4
ResNet50 Triplet/Softhard 64.4 32.4 75.4 -- 84.2 -- 90.1 -- 94.1
ResNet50 NPair/None 62.3 30.1 69.5 -- 80.2 -- 87.3 -- 92.1
ResNet50 ProxyNCA/None 66.3 35.8 80.0 -- 87.2 -- 91.8 -- 95.1

Online Products

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 10 -- 100 -- 1000
ResNet50 Margin/Distance 89.6 34.9 76.1 -- 88.7 -- 95.1 -- 98.3
ResNet50 Triplet/Softhard 89.1 33.7 74.3 -- 87.6 -- 94.9 -- 98.5
ResNet50 NPair/None 88.8 31.1 70.9 -- 85.2 -- 93.8 -- 98.2

In-Shop Clothes

Architecture Loss/Sampling NMI F1 Recall @ 1 -- 10 -- 20 -- 30 -- 50
ResNet50 Margin/Distance 88.2 27.7 84.5 -- 96.1 -- 97.4 -- 97.9 -- 98.5
ResNet50 Triplet/Semihard 89.0 30.8 83.9 -- 96.3 -- 97.6 -- 98.4 -- 98.8
ResNet50 NPair/None 88.0 27.6 80.9 -- 95.0 -- 96.6 -- 97.5 -- 98.2

NOTE:

  1. Regarding Vehicle-ID: Due to the number of test sets, size of the training set and little public accessibility, results are not included for the time being.
  2. Regarding ProxyNCA for Online Products and In-Shop Clothes: Due to the high number of classes, the number of proxies required is too high for useful training (>10000 proxies).

ToDO:

  • Fix Version in requirements.txt
  • Add Results for Implementations
  • Finalize Comments
  • Add Inception-BN
  • Add Lifted Structure Loss
Owner
Karsten Roth
PhD (IMPRS-IS, ELLIS) EML Tuebingen | prev. @VectorInstitute, @mila-iqia and @aws.
Karsten Roth
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023