A novel Engagement Detection with Multi-Task Training (ED-MTT) system

Related tags

Deep LearningED-MTT
Overview

ED-MTT

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment. You can check the colab notebook bellow for detailed explanatoins about data loading and code execution.

Open In Colab

Introduction & Problem Definition

With the Covid-19 outbreak, the online working and learning environments became essential in our lives. For this reason, automatic analysis of non-verbal communication becomes crucial in online environments.

Engagement level is a type of social signal that can be predicted from facial expression and body pose. To this end, we propose an end-to-end deep learning-based system that detects the engagement level of the subject in an e-learning environment.

The engagement level feedback is important because:

  • Make aware students of their performance in classes.
  • Will help instructors to detect confusing or unclear parts of the teaching material.

Model Architecture

triplet_loss.png

The proposed system first extracts features with OpenFace, then aggregates frames in a window for calculating feature statistics as additional features. Finally, uses Bi-LSTM for generating vector embeddings from input sequences. In this system, we introduce a triplet loss as an auxiliary task and design the system as a multi-task training framework by taking inspiration from, where self-supervised contrastive learning of multi-view facial expressions was introduced. To the best of our knowledge, this is a novel approach in engagement detection literature. The key novelty of this work is the multi-task training framework using triplet loss together with Mean Squared Error (MSE). The main contributions of this paper are as follows:

  • Multi-task training with triplet and MSE losses introduces an additional regularization and reduces over-fitting due to very small sample size.
  • Using triplet loss mitigates the label reliability problem since it measures relative similarity between samples.
  • A system with lightweight feature extraction is efficient and highly suitable for real-life applications.

Dataset

We evaluate the performance of ED-MTT on a publicly available ``Engagement in The Wild'' dataset which is comprised of separated training and validation sets.

Untitled

The dataset is comprised of 78 subjects (25 females and 53 males) whose ages are ranged from 19 to 27. Each subject is recorded while watching an approximately 5 minutes long stimulus video of a Korean Language lecture.

Results

We compare the performance of ED-MTT with 9 different works from the state-of-the-art which will be reviewed in the rest of this section. Our results show that ED-MTT outperforms these state-of-the-art methods with at least a 5.74% improvement on MSE.

paper_performance.png

Repository structure

ED-MTT
│   README.md
│   Engagement_Labels.txt
|   ED-MTT.ipynb

└───code
│   │   dataloader.py
|   |   model.py
|   |   train.py
|   |   test.py
│   │   fix_path.py
|   |   utils.py
|   |   requirements.txt

└───configs
    │   batchnorm_default.yaml
    │   sweep.yaml

Running the Code

Untitled

Untitled

To train the experiments and manage the experiments, we used PyTorch Lightning together with Weights&Biases. All the detailed explonations to;

  • Load data and pre-trained weights,
  • Train the model from scratch,
  • Manage expriments and hyper-parameter search with wandb,
  • Reproduce the results presented in the paper,

are shown in ED-MTT.ipynb colab notebook.

Owner
Onur Çopur
Data scientist with research interests in computer vision and NLP. Highly skilled in Python programming, MLOps and deep learning frameworks.
Onur Çopur
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022