A general, feasible, and extensible framework for classification tasks.

Overview

Pytorch Classification

  • A general, feasible and extensible framework for 2D image classification.

Features

  • Easy to configure (model, hyperparameters)
  • Training progress monitoring and visualization
  • Weighted sampling / weighted loss / kappa loss / focal loss for imbalance dataset
  • Kappa metric for evaluating model on imbalance dataset
  • Different learning rate schedulers and warmup support
  • Data augmentation
  • Multiple GPUs support

Installation

Recommended environment:

  • python 3.8+
  • pytorch 1.7.1+
  • torchvision 0.8.2+
  • tqdm
  • munch
  • packaging
  • tensorboard

To install the dependencies, run:

$ git clone https://github.com/YijinHuang/pytorch-classification.git
$ cd pytorch-classification
$ pip install -r requirements.txt

How to use

1. Use one of the following two methods to build your dataset:

  • Folder-form dataset:

Organize your images as follows:

├── your_data_dir
    ├── train
        ├── class1
            ├── image1.jpg
            ├── image2.jpg
            ├── ...
        ├── class2
            ├── image3.jpg
            ├── image4.jpg
            ├── ...
        ├── class3
        ├── ...
    ├── val
    ├── test

Here, val and test directory have the same structure of train. Then replace the value of 'data_path' in BASIC_CONFIG in configs/default.yaml with path to your_data_dir and keep 'data_index' as null.

  • Dict-form dataset:

Define a dict as follows:

your_data_dict = {
    'train': [
        ('path/to/image1', 0), # use int. to represent the class of images (start from 0)
        ('path/to/image2', 0),
        ('path/to/image3', 1),
        ('path/to/image4', 2),
        ...
    ],
    'test': [
        ('path/to/image5', 0),
        ...
    ],
    'val': [
        ('path/to/image6', 0),
        ...
    ]
}

Then use pickle to save it:

import pickle
pickle.dump(your_data_dict, open('path/to/pickle/file', 'wb'))

Finally, replace the value of 'data_index' in BASIC_CONFIG in configs/default.yaml with 'path/to/pickle/file' and set 'data_path' as null.

2. Update your training configurations and hyperparameters in configs/default.yaml.

3. Run to train:

$ CUDA_VISIBLE_DEVICES=x python main.py

Optional arguments:

-c yaml_file      Specify the config file (default: configs/default.yaml)
-o                Overwrite save_path and log_path without warning
-p                Print configs before training

4. Monitor your training progress in website 127.0.0.1:6006 by running:

$ tensorborad --logdir=/path/to/your/log --port=6006

Tips to use tensorboard on a remote server

Owner
Eugene
Eugene
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022