Predict halo masses from simulations via graph neural networks

Overview

HaloGraphNet

DOI arXiv

Predict halo masses from simulations via Graph Neural Networks.

Given a dark matter halo and its galaxies, creates a graph with information about the 3D position, stellar mass and other properties. Then, it trains a Graph Neural Network to predict the mass of the host halo. Data are taken from the CAMELS hydrodynamic simulations, specially suited for Machine Learning purposes. Neural nets architectures are defined making use of the package PyTorch-geometric.

See the papers arXiv:2111.08683 for more details.

Scripts

Here is a brief description of the codes included:

  • main.py: main driver to train and test the network.

  • onlytest.py: tests a pre-trained model.

  • hyperparams_optimization.py: optimize the hyperparameters using optuna.

  • camelsplots.py: plot several features of the CAMELS data.

  • captumtest.py: studies interpretability of the model.

  • halomass.py: using models trained in CAMELS, predicts the mass of real halos, such as the Milky Way and Andromeda.

  • visualize_graphs.py: display several halos as graphs in 2D or 3D.

The folder Hyperparameters includes files with lists of default hyperparameters, to be modified by the user. The current files contain the best values for each CAMELS simulation suite and set separately, obtained from hyperparameter optimization.

The folder Models includes some pre-trained models for the hyperparameters defined in Hyperparameters.

In the folder Source, several auxiliary routines are defined:

  • constants.py: basic constants and initialization.

  • load_data.py: contains routines to load data from simulation files.

  • plotting.py: includes functions for displaying the loss evolution and the results from the neural nets.

  • networks.py: includes the definition of the Graph Neural Networks architectures.

  • training.py: includes routines for training and testing the net.

  • galaxies.py: contains data for galaxies from the Milky Way and Andromeda halos.

Requisites

The libraries required for training the models and compute some statistics are:

  • numpy
  • pytorch-geometric
  • matplotlib
  • scipy
  • sklearn
  • optuna (only for optimization in hyperparams_optimization.py)
  • astropy (only for MW and M31 data in Source/galaxies.py)
  • captum (only for interpretability in captumtest.py)

Usage

These are some advices to employ the scripts described above:

  1. To perform a search of the optimal hyperparameters, run hyperparams_optimization.py.
  2. To train a model with a given set of parameters defined in params.py, run main.py.
  3. Once a model is trained, run onlytest.py to test in the training simulation suite and cross test it in the other one included in CAMELS (IllustrisTNG and SIMBA).
  4. Run captumtest.py to study the interpretability of the models, feature importance and saliency graphs.
  5. Run halomass.py to infer the mass of the Milky Way and Andromeda, whose data are defined in Source/galaxies.py. For this, note that only models without the stellar mass radius as feature are considered.

Citation

If you use the code, please link this repository, and cite arXiv:2111.08683 and the DOI 10.5281/zenodo.5676528.

Contact

For comments, questions etc. you can contact me at [email protected].

You might also like...
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

My published benchmark for a Kaggle Simulations Competition
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

TUPÃ was developed to analyze electric field properties in molecular simulations
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

Releases(v1.0)
Owner
Pablo Villanueva Domingo
PhD in Physics at Instituto de Física Corpuscular (IFIC) - Universitat de València (UV), Spain. Researching on cosmology and deep learning.
Pablo Villanueva Domingo
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022