TUPÃ was developed to analyze electric field properties in molecular simulations

Related tags

Deep Learningtupa
Overview

Twitter Follow

TUPÃ: Electric field analyses for molecular simulations

alt text

What is TUPÃ?

TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine to calculate electric fields at any point inside the simulation box throughout MD trajectories. TUPÃ also includes a PyMOL plugin to visualize electric field vectors together with molecules.

Required packages:

  • MDAnalysis >= 1.0.0
  • Python >= 3.x
  • Numpy >= 1.2.x

Installation instructions

First, make sure you have all required packages installed. For MDAnalysis installation procedures, click here.

After, just clone this repository into a folder of your choice:

git clone https://github.com/mdpoleto/tupa.git

To use TUPÃ easily, copy the directory pathway to TUPÃ folder and include an alias in your ~/.bashrc:

alias tupa="python /path/to/the/cloned/repository/TUPA.py"

To install the PyMOL plugin, open PyMOL > Plugin Manager and click on "Install New Plugin" tab. Load the TUPÃ plugin and use it via command-line within PyMOL. To usage instructions, read our FAQ.

TUPÃ Usage

TUPÃ calculations are based on parameters that are provided via a configuration file, which can be obtained via the command:

tupa -template config.conf

The configuration file usually contains:

[Environment Selection]
sele_environment      = (string)             [default: None]

[Probe Selection]
mode                = (string)             [default: None]
selatom             = (string)             [default: None]
selbond1            = (string)             [default: None]
selbond2            = (string)             [default: None]
targetcoordinate    = [float,float,float]  [default: None]
remove_self         = (True/False)         [default: False]
remove_cutoff       = (float)              [default: 1 A ]

[Solvent]
include_solvent     = (True/False)         [default: False]
solvent_cutoff      = (float)              [default: 10 A]
solvent_selection   = (string)             [default: None]

[Time]
dt                  = (integer)            [default: 1]

A complete explanation of each option in the configuration file is available via the command:

tupa -h

TUPÃ has 3 calculations MODES:

  • In ATOM mode, the coordinate of one atom will be tracked throughout the trajectory to serve as target point. If more than 1 atom is provided in the selection, the center of geometry (COG) is used as target position. An example is provided HERE.

  • In BOND mode, the midpoint between 2 atoms will be tracked throughout the trajectory to serve as target point. In this mode, the bond axis is used to calculate electric field alignment. By default, the bond axis is define as selbond1 ---> selbond2. An example is provided HERE.

  • In COORDINATE mode, a list of [X,Y,Z] coordinates will serve as target point in all trajectory frames. An example is provided HERE.

IMPORTANT:

  • All selections must be compatible with MDAnalysis syntax.
  • TUPÃ does not handle PBC images yet! Trajectories MUST be re-imaged before running TUPÃ.
  • Solvent molecules in PBC images are selected if within the cutoff. This is achieved by applying the around selection feature in MDAnalysis.
  • TUPÃ does not account for Particle Mesh Ewald (PME) electrostatic contributions! To minimize such effects, center your target as well as possible.
  • If using COORDINATE mode, make sure your trajectory has no translations and rotations. Our code does not account for rotations and translations.

TUPÃ PyMOL Plugin (pyTUPÃ)

To install pyTUPÃ plugin in PyMOL, click on Plugin > Plugin Manager and then "Install New Plugin" tab. Choose the pyTUPÃ.py file and click Install.

Our plugin has 3 functions that can be called via command line within PyMOL:

  • efield_point: create a vector at a given atom or set of coordinates.
efield_point segid LIG and name O1, efield=[-117.9143, 150.3252, 86.5553], scale=0.01, color="red", name="efield_OG"
  • efield_bond: create a vector midway between 2 selected atoms.
efield_point resname LIG and name O1, resname LIG and name C1, efield=[-94.2675, -9.6722, 58.2067], scale=0.01, color="blue", name="efield_OG-C1"
  • draw_bond_axis: create a vector representing the axis between 2 atoms.
draw_bond_axis resname LIG and name O1, resname LIG and name C1, gap=0.5, color="gray60", name="axis_OG-C1"

Citing TUPÃ

If you use TUPÃ in a scientific publication, we would appreciate citations to the following paper:

Marcelo D. Polêto, Justin A. Lemkul. TUPÃ: Electric field analysis for molecular simulations, 2022.

Bibtex entry:

@article{TUPÃ2022,
    author = {Pol\^{e}to, M D and Lemkul, J A},
    title = "{TUPÃ : Electric field analyses for molecular simulations}",
    journal = {},
    year = {},
    month = {},
    issn = {},
    doi = {},
    url = {},
    note = {},
    eprint = {},
}

Why TUPÃ?

In the Brazilian folklore, Tupã is considered a "manifestation of God in the form of thunder". To know more, refer to this.

Contact information

E-mail: [email protected] / [email protected]

You might also like...
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

MolRep: A Deep Representation Learning Library for Molecular Property Prediction
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Code for the paper
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Comments
  • 1.4.0 branch

    1.4.0 branch

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    opened by mdpoleto 0
  • 1.3.0 branch

    1.3.0 branch

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    opened by mdpoleto 0
Releases(v1.4.0)
  • v1.4.0(Aug 3, 2022)

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    Source code(tar.gz)
    Source code(zip)
  • v1.3.0(Jun 22, 2022)

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Apr 18, 2022)

    TUPÃ update (Apr 18 2022):

    • Make -dump now writes the entire system instead of just the environment selection.
    • Add field average and standard deviation values at the end of ElecField.dat
    • Fix documentation issues/typos.
    • Update paper metadata
    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Mar 23, 2022)

    TUPÃ update (Mar 22 2022):

    • Inclusion of LIST mode: TUPÃ reads a file containing XYZ coordinates that will be used as the probe position. Useful for binding sites or other pockets.
    • Fix documentation issues/typos.

    pyTUPÃ update (Mar 22 2022):

    • Support for a 3D representation of electric field standard deviation as a truncated cone that involves the electric field arrow.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Feb 9, 2022)

    TUPÃ first release (Feb 13 2022):

    • Calculation modes available: ATOM, BOND, COORDINATE
    • Support for triclinic simulation boxes only.
    • PBC support is limited to triclinic boxes. Future versions are expected to handle PBC corrections.
    • Removal of "self-contributions" are available to the COORDINATE mode only.
    • Users can dump a specific frame as a .pdb file. Futures versions are expected to allow the extraction of the environment set coordinates.
    • Residue contributions are calculated.

    pyTUPÃ first release (Feb 13 2022):

    • Support for draw_bond, efield_bond and efield_point.
    • EField vectors can be scaled up/down
    Source code(tar.gz)
    Source code(zip)
Owner
Marcelo D. Polêto
Marcelo D. Polêto
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022