TUPÃ was developed to analyze electric field properties in molecular simulations

Related tags

Deep Learningtupa
Overview

Twitter Follow

TUPÃ: Electric field analyses for molecular simulations

alt text

What is TUPÃ?

TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine to calculate electric fields at any point inside the simulation box throughout MD trajectories. TUPÃ also includes a PyMOL plugin to visualize electric field vectors together with molecules.

Required packages:

  • MDAnalysis >= 1.0.0
  • Python >= 3.x
  • Numpy >= 1.2.x

Installation instructions

First, make sure you have all required packages installed. For MDAnalysis installation procedures, click here.

After, just clone this repository into a folder of your choice:

git clone https://github.com/mdpoleto/tupa.git

To use TUPÃ easily, copy the directory pathway to TUPÃ folder and include an alias in your ~/.bashrc:

alias tupa="python /path/to/the/cloned/repository/TUPA.py"

To install the PyMOL plugin, open PyMOL > Plugin Manager and click on "Install New Plugin" tab. Load the TUPÃ plugin and use it via command-line within PyMOL. To usage instructions, read our FAQ.

TUPÃ Usage

TUPÃ calculations are based on parameters that are provided via a configuration file, which can be obtained via the command:

tupa -template config.conf

The configuration file usually contains:

[Environment Selection]
sele_environment      = (string)             [default: None]

[Probe Selection]
mode                = (string)             [default: None]
selatom             = (string)             [default: None]
selbond1            = (string)             [default: None]
selbond2            = (string)             [default: None]
targetcoordinate    = [float,float,float]  [default: None]
remove_self         = (True/False)         [default: False]
remove_cutoff       = (float)              [default: 1 A ]

[Solvent]
include_solvent     = (True/False)         [default: False]
solvent_cutoff      = (float)              [default: 10 A]
solvent_selection   = (string)             [default: None]

[Time]
dt                  = (integer)            [default: 1]

A complete explanation of each option in the configuration file is available via the command:

tupa -h

TUPÃ has 3 calculations MODES:

  • In ATOM mode, the coordinate of one atom will be tracked throughout the trajectory to serve as target point. If more than 1 atom is provided in the selection, the center of geometry (COG) is used as target position. An example is provided HERE.

  • In BOND mode, the midpoint between 2 atoms will be tracked throughout the trajectory to serve as target point. In this mode, the bond axis is used to calculate electric field alignment. By default, the bond axis is define as selbond1 ---> selbond2. An example is provided HERE.

  • In COORDINATE mode, a list of [X,Y,Z] coordinates will serve as target point in all trajectory frames. An example is provided HERE.

IMPORTANT:

  • All selections must be compatible with MDAnalysis syntax.
  • TUPÃ does not handle PBC images yet! Trajectories MUST be re-imaged before running TUPÃ.
  • Solvent molecules in PBC images are selected if within the cutoff. This is achieved by applying the around selection feature in MDAnalysis.
  • TUPÃ does not account for Particle Mesh Ewald (PME) electrostatic contributions! To minimize such effects, center your target as well as possible.
  • If using COORDINATE mode, make sure your trajectory has no translations and rotations. Our code does not account for rotations and translations.

TUPÃ PyMOL Plugin (pyTUPÃ)

To install pyTUPÃ plugin in PyMOL, click on Plugin > Plugin Manager and then "Install New Plugin" tab. Choose the pyTUPÃ.py file and click Install.

Our plugin has 3 functions that can be called via command line within PyMOL:

  • efield_point: create a vector at a given atom or set of coordinates.
efield_point segid LIG and name O1, efield=[-117.9143, 150.3252, 86.5553], scale=0.01, color="red", name="efield_OG"
  • efield_bond: create a vector midway between 2 selected atoms.
efield_point resname LIG and name O1, resname LIG and name C1, efield=[-94.2675, -9.6722, 58.2067], scale=0.01, color="blue", name="efield_OG-C1"
  • draw_bond_axis: create a vector representing the axis between 2 atoms.
draw_bond_axis resname LIG and name O1, resname LIG and name C1, gap=0.5, color="gray60", name="axis_OG-C1"

Citing TUPÃ

If you use TUPÃ in a scientific publication, we would appreciate citations to the following paper:

Marcelo D. Polêto, Justin A. Lemkul. TUPÃ: Electric field analysis for molecular simulations, 2022.

Bibtex entry:

@article{TUPÃ2022,
    author = {Pol\^{e}to, M D and Lemkul, J A},
    title = "{TUPÃ : Electric field analyses for molecular simulations}",
    journal = {},
    year = {},
    month = {},
    issn = {},
    doi = {},
    url = {},
    note = {},
    eprint = {},
}

Why TUPÃ?

In the Brazilian folklore, Tupã is considered a "manifestation of God in the form of thunder". To know more, refer to this.

Contact information

E-mail: [email protected] / [email protected]

You might also like...
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

MolRep: A Deep Representation Learning Library for Molecular Property Prediction
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Code for the paper
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Comments
  • 1.4.0 branch

    1.4.0 branch

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    opened by mdpoleto 0
  • 1.3.0 branch

    1.3.0 branch

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    opened by mdpoleto 0
Releases(v1.4.0)
  • v1.4.0(Aug 3, 2022)

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    Source code(tar.gz)
    Source code(zip)
  • v1.3.0(Jun 22, 2022)

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Apr 18, 2022)

    TUPÃ update (Apr 18 2022):

    • Make -dump now writes the entire system instead of just the environment selection.
    • Add field average and standard deviation values at the end of ElecField.dat
    • Fix documentation issues/typos.
    • Update paper metadata
    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Mar 23, 2022)

    TUPÃ update (Mar 22 2022):

    • Inclusion of LIST mode: TUPÃ reads a file containing XYZ coordinates that will be used as the probe position. Useful for binding sites or other pockets.
    • Fix documentation issues/typos.

    pyTUPÃ update (Mar 22 2022):

    • Support for a 3D representation of electric field standard deviation as a truncated cone that involves the electric field arrow.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Feb 9, 2022)

    TUPÃ first release (Feb 13 2022):

    • Calculation modes available: ATOM, BOND, COORDINATE
    • Support for triclinic simulation boxes only.
    • PBC support is limited to triclinic boxes. Future versions are expected to handle PBC corrections.
    • Removal of "self-contributions" are available to the COORDINATE mode only.
    • Users can dump a specific frame as a .pdb file. Futures versions are expected to allow the extraction of the environment set coordinates.
    • Residue contributions are calculated.

    pyTUPÃ first release (Feb 13 2022):

    • Support for draw_bond, efield_bond and efield_point.
    • EField vectors can be scaled up/down
    Source code(tar.gz)
    Source code(zip)
Owner
Marcelo D. Polêto
Marcelo D. Polêto
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022