An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Overview

SensatUrban-BEV-Seg3D

This is the official implementation of our BEV-Seg3D-Net, an efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Features of our framework/model:

  • leveraging various proven methods in 2D segmentation for 3D tasks
  • achieve competitive performance in the SensatUrban benchmark
  • fast inference process, about 1km^2 area per minute with RTX 3090.

To be done:

  • add more complex/efficient fusion models
  • add more backbone like ResNeXt, HRNet, DenseNet, etc.
  • add more novel projection methods like pointpillars

For technical details, please refer to:

Efficient Urban-scale Point Clouds Segmentation with BEV Projection
Zhenhong Zou, Yizhe Li, Xinyu Zhang

(1) Setup

This code has been tested with Python 3.7, PyTorch 1.8, CUDA 11.0 on Ubuntu 16.04. PyTorch of earlier versions should be supported.

  • Clone the repository
git clone https://github.com/zouzhenhong98/SensatUrban-BEV-Seg3D.git & cd SensatUrban-BEV-Seg3D
  • Setup python environment
conda create -n bevseg python=3.7
source activate bevseg
pip install -r requirements.txt

(2) Preprocess

We provide various data analysis and preprocess methods for the SensatUrban dataset. (Part of the following steps are optional)

  • Before data generation, change the path_to_your_dataset in preprocess/point_EDA_31.py by:
Sensat = SensatUrbanEDA()
Sensat.root_dir = 'path_to_your_dataset'
Sensat.split = 'train' # change to 'test' for inference
  • Initialize the BEV projection arguments. We provide our optimal setting below, but you can set other values for analysis:
Sensat.grids_scale = 0.05
Sensat.grids_size = 25
Sensat.grids_step = 25
  • (Optional) If you want to test the sliding window points generator:
data_dir = os.path.join(self.root_dir, self.split)
ply_list = sorted(os.listdir(data_dir))[0]
ply_path = os.path.join(data_dir, ply_name)
ply_data = self.load_points(ply_path, reformat=True)
grids_data = self.grid_generator(ply_data, self.grids_size, self.grids_step, False) # return an Iterator
  • Calculating spatial overlap ratio in BEV projection:
Sensat.single_ply_analysis(Sensat.exp_point_overlay_count) # randomly select one ply file
Sensat.batch_ply_analysis(Sensat.exp_point_overlay_count) # for all ply files in the path
  • Calculating class overlap ratio in BEV projection, that means we ignore overlapped points belonging to the same category:
Sensat.single_ply_analysis(Sensat.exp_class_overlay_count) # randomly select one ply file
Sensat.batch_ply_analysis(Sensat.exp_class_overlay_count) # for all ply files in the path
  • Test BEV projection and 3D remapping with IoU index test (reflecting the consistency in 3D Segmentation and BEV Segmentation tasks):
Sensat.evaluate('offline', Sensat.map_offline_img2pts)
  • BEV data generation:
Sensat.batch_ply_analysis(Sensat.exp_gen_bev_projection)
  • Point Spatial Overlap Ratio Statistics at different projection scales

  • More BEV projection testing results refers to our sample images: completion test at imgs/completion_test, edge detection with different CV operators at imgs/edge_detection, rgb and label projection samples at imgs/projection_sample

(3) Training & Inference

We provide two basic multimodal fusion network developped from U-Net in the modeling folder, unet.py is the basic feature fusion, and uneteca.py is the attention fusion.

  • Change the path_to_your_dataset in mypath.py and dataloaders/init.py >>> 'cityscapes'

  • Train from sratch

python train.py --use-balanced-weights --batch-size 8 --base-size 500 --crop-size 500 --loss-type focal --epochs 200 --eval-interval 1
  • Change the save_dir in inference.py

  • Inference on test data

python inference.py --batch-size 8
  • Prediction Results Visualization (RGB, altitude, label, prediction)

(4) Evaluation

  • Remap your BEV prediction to 3D and evaluate in 3D benchmark in preprocess/point_EDA_31.py (following the prvious initialization steps):
Sensat.evaluate_batch(Sensat.evaluate_batch_nn(Sensat.eval_offline_img2pts))

(5) Citation

If you find our work useful in your research, please consider citing: (Information is coming soon! We are asking the open-access term of the conference!)

(6) Acknowledgment

  • Part of our data processing code (read_ply and metrics) is developped based on https://github.com/QingyongHu/SensatUrban
  • Our code of neural network is developped based on a U-Net repo from the github, but unfortunately we are unable to recognize the raw github repo. Please tell us if you can help.

(7) Related Work

To learn more about our fusion segmentation methods, please refers to our previous work:

@article{Zhang2021ChannelAI,
    title={Channel Attention in LiDAR-camera Fusion for Lane Line Segmentation},
    author={Xinyu Zhang and Zhiwei Li and Xin Gao and Dafeng Jin and Jun Li},
    journal={Pattern Recognit.},
    year={2021},
    volume={118},
    pages={108020}
}

@article{Zou2021ANM,
    title={A novel multimodal fusion network based on a joint coding model for lane line segmentation},
    author={Zhenhong Zou and Xinyu Zhang and Huaping Liu and Zhiwei Li and A. Hussain and Jun Li},
    journal={ArXiv},
    year={2021},
    volume={abs/2103.11114}
}
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022