[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

Related tags

Deep LearningHRegNet
Overview

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

Introduction

The repository contains the source code and pre-trained models of our paper (published on ICCV 2021): HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration.

The overall network architecture is shown below:

Environments

The code mainly requires the following libraries and you can check requirements.txt for more environment requirements.

Please run the following commands to install point_utils

cd models/PointUtils
python setup.py install

Training device: NVIDIA RTX 3090

Datasets

The point cloud pairs list and the ground truth relative transformation are stored in data/kitti_list and data/nuscenes_list. The data of the two datasets should be organized as follows:

KITTI odometry dataset

DATA_ROOT
├── 00
│   ├── velodyne
│   ├── calib.txt
├── 01
├── ...

NuScenes dataset

DATA_ROOT
├── v1.0-trainval
│   ├── maps
│   ├── samples
│   │   ├──LIDAR_TOP
│   ├── sweeps
│   ├── v1.0-trainval
├── v1.0-test
│   ├── maps
│   ├── samples
│   │   ├──LIDAR_TOP
│   ├── sweeps
│   ├── v1.0-test

Train

The training of the whole network is divided into two steps: we firstly train the feature extraction module and then train the network based on the pretrain features.

Train feature extraction

  • Train keypoints detector by running sh scripts/train_kitti_det.sh or sh scripts/train_nusc_det.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR in the scripts.
  • Train descriptor by running sh scripts/train_kitti_desc.sh or sh scripts/train_nusc_desc.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR and PRETRAIN_DETECTOR in the scripts.

Train the whole network

Train the network by running sh scripts/train_kitti_reg.sh or sh scripts/train_nusc_reg.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR and PRETRAIN_FEATS in the scripts.

Update: Pretrained weights for detector and descriptor are provided in ckpt/pretrained. If you want to train descriptor, you can set PRETRAIN_DETECTOR to DATASET_keypoints.pth. If you want to train the whole network, you can set PRETRAIN_FEATS to DATASET_feats.pth.

Test

We provide pretrain models in ckpt/pretrained, please run sh scripts/test_kitti.sh or sh scripts/test_nusc.sh, please reminder to specify GPU,DATA_ROOT,SAVE_DIR in the scripts. The test results will be saved in SAVE_DIR.

Citation

If you find this project useful for your work, please consider citing:

@InProceedings{Lu_2021_HRegNet,
        author = {Lu, Fan and Chen, Guang and Liu, Yinlong and Zhang Lijun, Qu Sanqing, Liu Shu, Gu Rongqi},
        title = {HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration},
        booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
        year = {2021}
}

Acknowledgments

We want to thank all the ICCV reviewers and the following open-source projects for the help of the implementation:

  • DGR(Point clouds preprocessing and evaluation)
  • PointNet++(unofficial implementation, for Furthest Points Sampling)
Owner
Intelligent Sensing, Perception and Computing Group
Intelligent Sensing, Perception and Computing Group
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021