Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Overview

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

N|Solid

Overview

This example will show how to validate the status of our firewall before and after a software upgrade. This project will leverage JSNAPY over NETCONF RPCs.

In addition to the Ansible playbok, this project also ships with additional tools to help you along your way. You will find a Dockerfile for running the project in an isolated environment, and a Makefile for those of us that hate typing out everything all the time.

🚀 Executing the playbook

This project provides two unique methods of executing the playbook:

  1. Docker
  2. Your own Python environment

🐳 Docker

With Invoke installed on your machine

If you have invoke installed, you can use these two commands to build the container and run the playbook.

  1. build the container image with
$ invoke container
  1. run the playbook to push the network configuration changes
$ invoke ansible

Without Invoke installed on your system

  1. build the container image with
$ docker build -t registry.gitlab.com/cremsburg/juniper-automation-container:jsnapy-ospf files/docker/
  1. run the playbook to push the network configuration changes
$ docker run -it --rm \
    -v $PWD/files/:/home/tmp/files \
    -v $PWD/files/:/home/tmp/files \
    -w /home/tmp/files/ansible/ \
    registry.gitlab.com/cremsburg/juniper-automation-container:jsnapy-ospf ansible-playbook pb.jsnapy.ospf.yaml

〰️ Notes about Docker

If you are unsure if Docker is installed on your computer, then it's probably safe to suggest that it's not. If you're interested in learning more about the product, I encourage you to read a few blogs on the topic. A personal recommendation would be Digital Ocean

Some of the goodies placed in the docker folder are not relevant to our use case with Python. Feel free to delete them as you see fit, I simply wanted to share with you my Docker build process for all Juniper automation projects (including those based on Ansible). The world is your oyster and I won't judge you on whatever direction you take.

🐍 Your own Python environment

I have included a Poetry file for anyone saavy enough to take advantage. For the uninitiated, Poetry helps replicate Python environments between users with a single file. You'll need to have Poetry installed on your machine, for most users that will be solved with pip install poetry.

This is optional, I will share the methods of going with Poetry or without

  1. install Python dependencies

1a. with Poetry

$ poetry install

1b. without Poetry

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r files/docker/requirements.txt
  1. change into Ansible directory
$ cd files/ansible
  1. install official Ansible roles for Juniper devices
$ ansible-galaxy install juniper.junos
  1. run your Ansible playbook
$ ansible-playbook pb.jsnapy.ospf.yaml -i ../docker/inventory.yaml

⚠️ Running into an error about junos-eznc? ⚠️

There's an annoyance with Ansible and the way it interacts with your Python virtual environment. Do not let that frustrate you to the point that you ditch virtual environments altogether, instead use this quick technique to fix the problem.

From your terminal, find out the full path to Python within your virtual environment

$ which python
/home/cdot/.cache/pypoetry/virtualenvs/jsnapy-ospf-X7Chj_yD-py3.8/bin/python

Copy the output from your command and update the ansible.cfg file found in the same directory as the playbook. Do not update the ansible.cfg file in the root of this project, that won't accomplish anything.

add the following line to your ansible.cfg file, make sure to paste in the output of your clipboard rather than use my example

interpreter_python = /home/cdot/.cache/pypoetry/virtualenvs/jsnapy-ospf-X7Chj_yD-py3.8/bin/python

Sorry about that, one day Ansible will get it right. Until then, I recommend considering the Docker approach.

〰️ Notes about Python Virtual Environments

Similar to Docker, if you are unsure if you're using Python Virtual Environment features, it is safe to suggest that you're not. You are strongly recommended to using a Python Virtual Environment everywhere. You can really mess up your machine if you're too lazy and say "ehh, that seems like it's not important". It is. If it sounds like I'm speaking from experience, well I'll never admit to it.

If you're interested in learning more about setting up Virtual Environments, I encourage you to read a few blogs on the topic. A personal recommendation would be

📝 Dependencies

Refer to the Poetry Lock file located at poetry.lock for detailed descriptions on each package installed.

⚙️ How it works

Let's take a second to do a nice John Madden play-by-play by visiting the documentation in the files/docs/ directory.

Name Description
pb.jsnapy.ospf.rst Validate OSPF neighbors with JSNAPY

〰️ Just an FYI for Ansible AWX / Tower users

You'll note that there is an ansible.cfg file found in the root of the project's directory, as well as a folder roles/ to host the requirements.yml file.

The only purpose these serve is for Ansible Tower, which will look for these files when the project syncs from Gitlab/Github/Whatever, and Tower will auto-install the packages.

The ansible.cfg file will be the definitive for each Playbook (Template) execution, so super important to keep it here.

📸 Screenshot

pb.configure.yaml

Owner
Calvin Remsburg
Calvin Remsburg
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022