Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Overview

Representation Robustness Evaluations

Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all the scripts, we assume the working directory to be the root folder of our code.

Get ready a pre-trained model

We have two methods to pre-train a model for evaluation. Method 1: Follow instructions from MadryLab's robustness package to train a standard model or a robust model with a given PGD setting. For example, to train a robust ResNet18 with l-inf constraint of eps 8/255

python -m robustness.main --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch resnet18 \
--epoch 150 \
--adv-train 1 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--exp-name resnet18_adv

Method 2: Use our wrapped code and set task=train-model. Optional commands:

  • --classifier-loss = robust (adversarial training) / standard (standard training)
  • --arch = baseline_mlp (baseline-h with last two layer as mlp) / baseline_linear (baseline-h with last two layer as linear classifier) / vgg16 / ...

Our results presented in Figure 1 and 2 use model architecture: baseline_mlp, resnet18, vgg16, resnet50, DenseNet121. For example, to train a baseline-h model with l-inf constraint of eps 8/255

python main.py --dataset cifar \
--task train-model \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch baseline_mlp \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--classifier-loss robust \
--exp-name baseline_mlp_adv

To parse the store file, run

from cox import store
s = store.Store('/path/to/model/parent-folder', 'model-folder')
print(s['logs'].df)
s.close()

 

Evaluate the representation robustness (Figure 1, 2, 3)

Set task=estimate-mi to load a pre-trained model and test the mutual information between input and representation. By subtracting the normal-case and worst-case mutual information we have the representation vulnerability. Optional commands:

  • --estimator-loss = worst (worst-case mutual information estimation) / normal (normal-case mutual information estimation)

For example, to test the worst-case mutual information of ResNet18, run

python main.py --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--task estimate-mi \
--representation-type layer \
--estimator-loss worst \
--arch resnet18 \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.best \
--exp-name estimator_worst__resnet18_adv \
--no-store

or to test on the baseline-h, run

python main.py --dataset cifar \
--data /path/to/dataset \
--out-dir /path/to/output \
--task estimate-mi \
--representation-type layer \
--estimator-loss worst \
--arch baseline_mlp \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.best \
--exp-name estimator_worst__baseline_mlp_adv \
--no-store

 

Learn Representations

Set task=train-encoder to learn a representation using our training principle. For train by worst-case mutual information maximization, we can use other lower-bound of mutual information as surrogate for our target, which may have slightly better empirical performance (e.g. nce). Please refer to arxiv.org/abs/1808.06670 for more information. Optional commands:

  • --estimator-loss = worst (worst-case mutual information maximization) / normal (normal-case mutual information maximization)
  • --va-mode = dv (Donsker-Varadhan representation) / nce (Noise-Contrastive Estimation) / fd (fenchel dual representation)
  • --arch = basic_encoder (Hjelm et al.) / ...

Example:

python main.py --dataset cifar \
--task train-encoder \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch basic_encoder \
--representation-type layer \
--estimator-loss worst \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--exp-name learned_encoder

 

Test on Downstream Classifications (Figure 4, 5, 6; Table 1, 3)

Set task=train-classifier to test the classification accuracy of learned representations. Optional commands:

  • --classifier-loss = robust (adversarial classification) / standard (standard classification)
  • --classifier-arch = mlp (mlp as downstream classifier) / linear (linear classifier as downstream classifier)

Example:

python main.py --dataset cifar \
--task train-classifier \
--data /path/to/dataset \
--out-dir /path/to/output \
--arch basic_encoder \
--classifier-arch mlp \
--representation-type layer \
--classifier-loss robust \
--epoch 500 --lr 1e-4 --step-lr 10000 --workers 2 \
--attack-lr=1e-2 --constraint inf --eps 8/255 \
--resume /path/to/saved/model/checkpoint.pt.latest \
--exp-name test_learned_encoder
Owner
Sicheng
Sicheng
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022