FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

Overview

FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically. In this repository, we provide our code and the data we use.

Environment

  • Python == 3.8.5
  • Pytorch == 1.7.1
  • Numpy == 1.19.2
  • Scipy == 1.5.4
  • Nltk == 3.5
  • Sacrebleu == 1.5.1
  • Sumeval == 0.2.2

Dataset

The folder DataSet contains all the data which was already preprocessed, and can be directly used to train or evaluate the model.

The folder PreProcess contains the scrips to preprocess data, and you can run

python run_total_process_data.py num_processes num_tasks

to preprocess the data and run

python gather_data.py

to gather the data and the final dataset will be put in the folder DataSet. We use subprocess module of python to preprocess parallelly. The arguments num_processes and num_tasks are the number of parallel subprocesses and the number of tasks one subprocess executes. The two arguments should be set according to the capacity of the CPU.

Model

We use GNN as encoder and transformer with dual copy mechanism as decoder. We define the model in file Model.py. If you want to train the model, you can run

python run_model.py train

and the model will be saved as best_model.pt.

If you want to evaluate the model, you can run

python run_model.py test

and the output commit messages will be saved in OUTPUT/output_fira.

Output

The folder OUTPUT contains the commit messages generated by FIRA and other compared approaches.

Metrics

The folder Metrics contains the scripts to compute the metrics we use to evaluate our approach, including BLEU, ROUGE-L, METEOR, and Penalty-BLEU. The commands to execute are as follows, and ref is the ground_truth commit message and gen is the generated commit message.

Bleu-B-Norm.py, Rouge.py, and Meteor.py are from the scripts provided by Tao et al. [1], who conducted an experimental study on the evaluation of commit message generation models and found that B-Norm BLEU exhibits the most consistently with human judgements on the quality of commit messages.

python Bleu-B-Norm.py ref < gen

python Rouge.py --ref_path ref --gen_path gen

python Meteor.py --ref_path ref --gen_path gen

python Bleu-Penalty.py ref < gen

Human Evaluation

The folder HumanEvaluation contains the scores of the six participants.

Reference

Tao W, Wang Y, Shi E, et al. On the Evaluation of Commit Message Generation Models: An Experimental Study[C]//2021 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 2021: 126-136.

PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021