Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

Overview

IMDB Sentiment Analysis

This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial Intelligence and Automation

Training

To train a model (CNN, LSTM, Transformer), simply run

python train.py --cfg <./model/xxx> --save <./save/>

You can change the configuration in config.

Model

LSTM

we follow the origin LSTM as possible

lstm

CNN

we adopt the methods mentioned in Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

cnn

Transformer

We use the original Transformer Encoder as Attention is all you need and use the concept of CLS Token as BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

trans

Experiment result

Model Comparison

Model Accuracy
LSTM 89.02
Transformer 87.47
CNN 88.66
Fine-tuned BERT 93.43

LSTM

Batch size
Batch size Loss Accuracy
64 0.4293 0.8802
128 0.4298 0.8818
256 0.4304 0.8836
512 0.4380 0.8807
Embedding Size
Embedding size train Loss train Accuracy val loss val accuracy
32 0.4021 0.9127 0.4419 0.8707
64 0.3848 0.9306 0.4297 0.8832
128 0.3772 0.9385 0.4265 0.8871
256 0.3584 0.9582 0.4303 0.8825
512 0.3504 0.9668 0.4295 0.8838
Drop out
Drop out rate Train Loss Train Accuracy Test loss Test Accuracy
0.0 0.3554 0.9623 0.4428 0.8704
0.1 0.3475 0.9696 0.4353 0.8780
0.2 0.3516 0.9652 0.4312 0.8825
0.3 0.3577 0.9589 0.4292 0.8844
0.4 0.3587 0.9576 0.4272 0.8868
0.5 0.3621 0.9544 0.4269 0.8865
0.6 0.3906 0.9242 0.4272 0.8863
0.7 0.3789 0.9356 0.4303 0.8826
0.8 0.3939 0.9204 0.4311 0.8826
0.9 0.4211 0.8918 0.4526 0.8584
Weight decay
Weight decay train loss train accuracy test loss test accuracy
1.0e-8 0.3716 0.9436 0.4261 0.8876
1.0e-7 0.3803 0.9349 0.4281 0.8862
1.0e-6 0.3701 0.9456 0.4264 0.8878
1.0e-5 0.3698 0.9461 0.4283 0.8850
1.0e-4 0.3785 0.9377 0.4318 0.8806
Number layers

Number of LSTM blocks

Number layers train loss train accuracy test loss test accuracy
1 0.3786 0.9364 0.4291 0.8844
2 0.3701 0.9456 0.4264 0.8878
3 0.3707 0.9451 0.4243 0.8902
4 0.3713 0.9446 0.4279 0.8857

CNN

out channel size
out size train acc test acc
8 0.9679 0.8743
16 0.9791 0.8767
32 0.9824 0.8811
64 0.9891 0.8848
128 0.9915 0.8824
256 0.9909 0.8827
512 0.9920 0.8841
1024 0.9959 0.8833
multi scale filter
Number train acc test acc
1 [5] 0.9698 0.8748
2 [5, 11] 0.9852 0.8827
3 [5, 11, 17] 0.9890 0.8850
4 [5, 11, 17, 23] 0.9915 0.8848
5 [5, 11, 17, 23, 29] 0.9924 0.8842
6 [5, 11, 17, 23, 29, 35] 0.9930 0.8836
step train acc test acc
2 [5 7 9] 0.9878 0.8816
4 [5 9 11] 0.9890 0.8816
6 [5 11 17] 0.9919 0.8834
8 [5 13 21] 0.9884 0.8836
10[5 15 25] 0.9919 0.8848
12[5 17 29] 0.9898 0.8812
14[5 29 43] 0.9935 0.8809
Owner
Daniel
Daniel
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
PyTranslator é simultaneamente um editor e tradutor de texto com diversos recursos e interface feito com coração e 100% em Python

PyTranslator O Que é e para que serve o PyTranslator? PyTranslator é simultaneamente um editor e tradutor de texto em com interface gráfica que usa a

Elizeu Barbosa Abreu 1 May 12, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Francis R. Willett 305 Dec 22, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 04, 2021
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while

Machel Reid 10 Dec 27, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022