Weakly-supervised Text Classification Based on Keyword Graph

Overview

Weakly-supervised Text Classification Based on Keyword Graph

How to run?

Download data

Our dataset follows previous works. For long texts, we follow Conwea. For short texts, we follow LOTClass.
We transform all their data into unified json format.

  1. Download datasets from: https://drive.google.com/drive/folders/1D8E9T-vuBE-YdAd9OBy-yS4UW4AptA58?usp=sharing

    • Long text datasets(follow Conwea):

      • 20Newsgroup Fine(20NF)
      • 20Newsgroup Coarse(20NC)
      • NYT Fine(NYT_25)
      • NYT Coarse(NYT_5)
    • Short text datasets(follow LOTClass)

      • Agnews
      • dbpedia
      • imdb
      • amazon
  2. Unzip data into './data/processed'

Another way to obtain data (Not recommended):
You can download long text data from Conwea and short text data from LOTClass and transform data into json format using our code. The code is located at 'preprocess_data/process_long.py (process_short.py) You need to edit the preprocess code to change the dataset path to your downloaded path and change the taskname. The processed data is located in 'data/processed'. We alse provide preprocess code for X-class, which is 'process_x_class.py'.

Requirements

This project is based on python==3.8. The dependencies are as follow:

pytorch
DGL
yacs
visdom
transformers
scikit-learn
numpy
scipy

Train and Eval

  • Recommend to start visdom to show the results.
visdom -p 8888

Open the browser to the server_ip:8888 to show visdom panel.

  • Train:
    • First edit 'task/pipeline.py' to specify to config file and CUDA devices you used.
      Some configuration files are provided in the config folder.

    • Start training:

      python task/pipeline.py
      
    • Our code is based on multi GPUs, may be unable to run on single GPU currently.

Run on your custom dataset.

  1. provide datasets to dir data/processed.

    • keywords.json
      keywords for each class. type: dict. key: class_index. value: list containing all keywords for this class. See provided datasets for details.

    • unlabeled.json
      unlabeled sentences in our paper. type: list. item: list with 2 items([sentence_i,label_i]).
      In order to facilitate the evaluation, we are similar to Conwea's settings, where labels of sentences are provided. The labels are only used for evaluation.

  2. provide config to dir config. You can copy one of the existing config files and change some fields, like number_classes, classifier.type, data_dir_name etc.

  3. Specify the config file name in pipeline.py and run the pipeline code.

Citation

Please cite the following paper if you find our code helpful! Thank you very much.

Lu Zhang, Jiandong Ding, Yi Xu, Yingyao Liu and Shuigeng Zhou. "Weakly-supervised Text Classification Based on Keyword Graph". EMNLP 2021.

Owner
Hello_World
Computer Science at Fudan University.
Hello_World
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Chinese NER with albert/electra or other bert descendable model (keras)

Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │   ├── __init__.py │   ├── log

2 Nov 20, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023