LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

Overview

LV-BERT

Introduction

In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, please refer to our paper LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021).

Requirements

  • Python 3.6
  • TensorFlow 1.15
  • numpy
  • scikit-learn

Experiments

Firstly, set your data dir (absolute) to place datasets and models by

DATA_DIR=/path/to/data/dir

Fine-tining

We give the instruction to fine-tune a pre-trained LV-BERT-small (13M parameters) on GLUE. You can refer to this Google Colab notebook for a quick example. All models of different are provided this Google Drive folder. The models are pre-trained 1M steps with sequence length 128 to save compute. *_seq512 named models are trained for more 100K steps with sequence length 512 whichs are used for long-sequence tasks like SQuAD. See our paper for more details on model performance.

  1. Create your data directory.
mkdir -p $DATA_DIR/models && cp vocab.txt $DATA_DIR/

Put the pre-trained model in the corresponding directory

mv lv-bert_small $DATA_DIR/models/
  1. Download the GLUE data by running
python3 download_glue_data.py
  1. Set up the data by running
cd glue_data && mv CoLA cola && mv MNLI mnli && mv MRPC mrpc && mv QNLI qnli && mv QQP qqp && mv RTE rte && mv SST-2 sst && mv STS-B sts && mv diagnostic/diagnostic.tsv mnli && mkdir -p $DATA_DIR/finetuning_data && mv * $DATA_DIR/finetuning_data && cd ..
  1. Fine-tune the model by running
bash finetune.sh $DATA_DIR

PS: (a) You can test different tasks by changing configs in finetune.sh. (b) Some of the datasets on GLUE are small, causing that the results may vary substantially for different random seeds. The same as ELECTRA, we report the median of 10 fine-tuning runs from the same pre-trained model for each result.

Pre-training

We give the instruction to pre-train LV-BERT-small (13M parameters) using the OpenWebText corpus.

  1. First download the OpenWebText pre-traing corpus (12G).

  2. After downloading the pre-training corpus, build the pre-training dataset tf-record by running

bash build_data.sh $DATA_DIR
  1. Then, pre-train the model by running
bash pretrain.sh $DATA_DIR

Bibtex

@inproceedings{yu2021lv-bert,
        author = {Yu, Weihao and Jiang, Zihang and Chen, Fei, Hou, Qibin and Feng, Jiashi},
        title = {LV-BERT: Exploiting Layer Variety for BERT},
        booktitle = {Findings of ACL},
        month = {August},
        year = {2021}
}

Reference

This repo is based on the repo ELECTRA.

Owner
Weihao Yu
PhD student at NUS
Weihao Yu
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Jeong Ukjae 13 Dec 13, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023