Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Related tags

Deep LearningDCVC
Overview

Introduction

Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Prerequisites

  • Python 3.8 and conda, get Conda
  • CUDA 11.0
  • Environment
    conda create -n $YOUR_PY38_ENV_NAME python=3.8
    conda activate $YOUR_PY38_ENV_NAME
    
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    python -m pip install -r requirements.txt
    

Test dataset

Currenlty the spatial resolution of video needs to be cropped into the integral times of 64.

The dataset format can be seen in dataset_config_example.json.

For example, one video of HEVC Class B can be prepared as:

  • Crop the original YUV via ffmpeg:
    ffmpeg -pix_fmt yuv420p  -s 1920x1080 -i  BasketballDrive_1920x1080_50.yuv -vf crop=1920:1024:0:0 BasketballDrive_1920x1024_50.yuv
    
  • Make the video path:
    mkdir BasketballDrive_1920x1024_50
    
  • Convert YUV to PNG:
    ffmpeg -pix_fmt yuv420p -s 1920x1024 -i BasketballDrive_1920x1024_50.yuv   -f image2 BasketballDrive_1920x1024_50/im%05d.png
    

At last, the folder structure of dataset is like:

/media/data/HEVC_B/
    * BQTerrace_1920x1024_60/
        - im00001.png
        - im00002.png
        - im00003.png
        - ...
    * BasketballDrive_1920x1024_50/
        - im00001.png
        - im00002.png
        - im00003.png
        - ...
    * ...
/media/data/HEVC_D
/media/data/HEVC_C/
...

Pretrained models

  • Download CompressAI models

    cd checkpoints/
    python download_compressai_models.py
    cd ..
    
  • Download DCVC models and put them into /checkpoints folder.

Test DCVC

Example of test the PSNR model:

python test_video.py --i_frame_model_name cheng2020-anchor  --i_frame_model_path  checkpoints/cheng2020-anchor-3-e49be189.pth.tar  checkpoints/cheng2020-anchor-4-98b0b468.pth.tar   checkpoints/cheng2020-anchor-5-23852949.pth.tar   checkpoints/cheng2020-anchor-6-4c052b1a.pth.tar  --test_config     dataset_config_example.json  --cuda true --cuda_device 0,1,2,3   --worker 4   --output_json_result_path  DCVC_result_psnr.json    --model_type psnr  --recon_bin_path recon_bin_folder_psnr --model_path checkpoints/model_dcvc_quality_0_psnr.pth  checkpoints/model_dcvc_quality_1_psnr.pth checkpoints/model_dcvc_quality_2_psnr.pth checkpoints/model_dcvc_quality_3_psnr.pth

Example of test the MSSSIM model:

python test_video.py --i_frame_model_name bmshj2018-hyperprior  --i_frame_model_path  checkpoints/bmshj2018-hyperprior-ms-ssim-3-92dd7878.pth.tar checkpoints/bmshj2018-hyperprior-ms-ssim-4-4377354e.pth.tar    checkpoints/bmshj2018-hyperprior-ms-ssim-5-c34afc8d.pth.tar    checkpoints/bmshj2018-hyperprior-ms-ssim-6-3a6d8229.pth.tar   --test_config   dataset_config_example.json  --cuda true --cuda_device 0,1,2,3   --worker 4   --output_json_result_path  DCVC_result_msssim.json  --model_type msssim  --recon_bin_path recon_bin_folder_msssim --model_path checkpoints/model_dcvc_quality_0_msssim.pth checkpoints/model_dcvc_quality_1_msssim.pth checkpoints/model_dcvc_quality_2_msssim.pth checkpoints/model_dcvc_quality_3_msssim.pth

It is recommended that the --worker number is equal to your GPU number.

Acknowledgement

The implementation is based on CompressAI and PyTorchVideoCompression. The model weights of intra coding come from CompressAI.

Citation

If you find this work useful for your research, please cite:

@article{li2021deep,
  title={Deep Contextual Video Compression},
  author={Li, Jiahao and Li, Bin and Lu, Yan},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022