Domain Connectivity Analysis Tools to analyze aggregate connectivity patterns across a set of domains during security investigations

Overview

DomainCAT (Domain Connectivity Analysis Tool)

Domain Connectivity Analysis Tool is used to analyze aggregate connectivity patterns across a set of domains during security investigations

This project was a collaborative effort between myself and Matthew Pahl

Introduction

When analyzing pivots during threat hunting, most people approach it from the perspective of “what can a single pivot tell you?” But often actors will set their domains up to use commodity hosting infrastructure, so the number of entities associated with a given pivot are so big they don’t really give you any useful information.

This is where DomainCAT can help. Actors make decisions around domain registration and hosting options when setting up their malicious infrastructure. These can be considered behavioral choices.

  • What registrar(s) do they use?
  • What TLDs do they prefer?
  • What hosting provider(s) do they like?
  • What TLS cert authority do they use?

All of these decisions, together, makeup part of that actor’s infrastructure tools, tactics and procedures (TTPs), and we can analyze them as a whole to look for patterns across a set of domains.

DomainCAT is a tool written in Jupyter Notebooks, a web-based interactive environment that lets you combine text, code, data, and interactive visualizations into your threat hunting toolbelt. The tool analyzes aggregate connectivity patterns across a set of domains looking at every pivot for every domain, asking; what are the shared pivots across these domains, how many shared pivots between each domain, do they have a small pivot count or a really large one? All of these aspects are taken into consideration as it builds out a connectivity graph that models how connected all the domains in an Iris search are to each other.

Example Visualizations:

3D visualization of domain to domain connections based on shared infrastructure, registration and naming patterns

SegmentLocal

2D visualization of domain to domain connection

domain_graph2d.png

DomainCat Tutorial

Click here for the DomainCAT Tutorial documentation

Installation Steps: Docker (recommended)

Note: building the container takes a bit of RAM to compile the resources for the jupyterlab-plotly extension. Bump up your RAM in Docker preferences to around 4Gb while building the container. Then afterwards you can drop it back down to your normal level to run the container

Steps:

Clone the git repository locally

$ git clone https://github.com/DomainTools/DomainCAT.git

Change directory to the domaincat folder

$ cd domaincat

Build the jupyter notebook container

$ docker build --tag domaincat .

Run the jupyter notebook

$ docker run -p 9999:9999 --name domaincat domaincat

Installation Steps: Manual (cross your fingers)

Note: this project uses JupyterLab Widgets, which requires nodejs >= 12.0.0 to be installed...which is on you

Steps:

Clone the git repository locally

$ git clone https://github.com/DomainTools/DomainCAT.git

Change directory to the domaincat folder

$ cd domaincat

Install python libraries

$ pip install -r requirements.txt

JupyterLab widgets extension

$ jupyter labextension install [email protected] --no-build
$ jupyter labextension install @jupyter-widgets/jupyterlab-manager --no-build
$ jupyter labextension install [email protected] --no-build
$ jupyter lab build

Run the jupyter notebook

$ jupyter lab

Plotly Bug: in the 2D visualization of the domain graph there is a weird bug in Plotly Visualization library where if your cursor is directly over the center of a node, the node's tool tip with the domain's name will disappear and if you click the node, it unselects all nodes. So only click on a node if you see it's tool tip

Owner
DomainTools
DomainTools
Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Hoseong Lee 78 Aug 23, 2022
A simple, fast, extensible python library for data validation.

Validr A simple, fast, extensible python library for data validation. Simple and readable schema 10X faster than jsonschema, 40X faster than schematic

kk 209 Sep 19, 2022
Simple, realtime visualization of neural network training performance.

pastalog Simple, realtime visualization server for training neural networks. Use with Lasagne, Keras, Tensorflow, Torch, Theano, and basically everyth

Rewon Child 416 Dec 29, 2022
Streamlit-template - A streamlit app template based on streamlit-option-menu

streamlit-template A streamlit app template for geospatial applications based on

Qiusheng Wu 41 Dec 10, 2022
I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things

Genuary 2022 I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things. Every day there is a new prompt for making

Joaquín Feltes 1 Jan 10, 2022
649 Pokémon palettes as CSVs, with a Python lib to turn names/IDs into palettes, or MatPlotLib compatible ListedColormaps.

PokePalette 649 Pokémon, broken down into CSVs of their RGB colour palettes. Complete with a Python library to convert names or Pokédex IDs into eithe

11 Dec 05, 2022
This is a Boids Simulation, written in Python with Pygame.

PyNBoids A Python Boids Simulation This is a Boids simulation, written in Python3, with Pygame2 and NumPy. To use: Save the pynboids_sp.py file (and n

Nik 17 Dec 18, 2022
Python code for solving 3D structural problems using the finite element method

3DFEM Python 3D finite element code This python code allows for solving 3D structural problems using the finite element method. New features will be a

Rémi Capillon 6 Sep 29, 2022
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
Tidy data structures, summaries, and visualisations for missing data

naniar naniar provides principled, tidy ways to summarise, visualise, and manipulate missing data with minimal deviations from the workflows in ggplot

Nicholas Tierney 611 Dec 22, 2022
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
A command line tool for visualizing CSV/spreadsheet-like data

PerfPlotter Read data from CSV files using pandas and generate interactive plots using bokeh, which can then be embedded into HTML pages and served by

Gino Mempin 0 Jun 25, 2022
Data Analysis: Data Visualization of Airlines

Data Analysis: Data Visualization of Airlines Anderson Cruz | London-UK | Linkedin | Nowa Capital Project: Traffic Airlines Airline Reporting Carrier

Anderson Cruz 1 Feb 10, 2022
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022
Python wrapper for Synoptic Data API. Retrieve data from thousands of mesonet stations and networks. Returns JSON from Synoptic as Pandas DataFrame

☁ Synoptic API for Python (unofficial) The Synoptic Mesonet API (formerly MesoWest) gives you access to real-time and historical surface-based weather

Brian Blaylock 23 Jan 06, 2023
A GUI for Pandas DataFrames

About Demo Installation Usage Features More Info About PandasGUI is a GUI for viewing, plotting and analyzing Pandas DataFrames. Demo Installation Ins

Adam Rose 2.8k Dec 24, 2022
Python package for the analysis and visualisation of finite-difference fields.

discretisedfield Marijan Beg1,2, Martin Lang2, Samuel Holt3, Ryan A. Pepper4, Hans Fangohr2,5,6 1 Department of Earth Science and Engineering, Imperia

ubermag 12 Dec 14, 2022
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023
A data visualization curriculum of interactive notebooks.

A data visualization curriculum of interactive notebooks, using Vega-Lite and Altair. This repository contains a series of Python-based Jupyter notebooks.

UW Interactive Data Lab 1.2k Dec 30, 2022