Rover. Finding the shortest pass by Dijkstra’s shortest path algorithm

Related tags

Algorithmsrover
Overview

rover

Rover. Finding the shortest path by Dijkstra’s shortest path algorithm

Задача Вы — инженер, проектирующий роверы-беспилотники. Вам надо спроектировать путь ровера по заранее известной местности с максимальной экономией заряда.

Местность Вам пришли данные о местности в закодированном виде: фотография, сконвертированная в матрицу с числами. Одна матрица — это прямоугольный снимок размером х на y метров. Вот пример одной такой сконвертированной фотографии, на ней снимок в 100 на 100 метров: Фото 1: 0 2 3 4 1 2 3 4 4 1 3 4 5 6 2 4 5 6 7 1 6 7 8 7 1 Числа показывают высоту над уровнем моря. 0 — это высота ровно на уровне моря, а, например, 4 — это 4 единицы над уровнем моря. На Фото 1 закодирован холм, пологий слева и резко обрывающийся справа. Небольшой холмик выглядел бы вот так Фото 2: 0 1 1 1 0 1 1 3 1 1 0 1 1 1 0 0 0 0 0 0 А вот так: ложбина между двумя холмами Фото 3: 1 1 2 3 4 1 0 1 2 3 2 1 1 1 2 3 3 1 0 1 4 3 1 1 0 На этих данных - скала или овраг, так как виден очень резкий перепад высот в середине снимка Фото 4: 1 1 6 7 7 1 1 6 7 8 1 6 7 8 9 А на этом - маленькая ямка Фото 5: 3 4 4 4 4 3 3 2 1 1 1 4 4 2 1 1 3 4 4 4 2 2 3 4 Данные придут вам в виде матрицы с неотрицательными числами. Размер матрицы NxM.

Ровер Ровер всегда движется из верхней левой точки [0][0] в правую нижнюю точку [N - 1][M - 1], где N и M - это длина и ширина матрицы. Это надо для того, чтобы разрезать фотографию на одинаковые куски, обработать их по-отдельности, а потом склеить весь путь. У вашего ровера есть несколько ограничений:

Движение Из любой точки ровер может двигаться только в четыре стороны: на север, юг, запад, восток. Ровер не может ехать по-диагонали — эта функция еще не реализована. Ровер не может вернуться в ту точку, в которой уже был. Заряд Ровер ездит на заряде. Вы знаете, что для ровера очень затратно подниматься и опускаться. Он тратит единицу заряда на само движение, и дополнительные единицы на подъем и спуск. Ровер бы вообще спокойно жил, если бы ездил по асфальту в Беларуси, тогда бы он тратил себе линейно заряд и в ус не дул, но жизнь его сложилась иначе. Расход заряда Заряд расходуется по правилу: На 1 шаг ровер всегда тратит 1 единицу заряда. На подъем или спуск ровер тратит заряд, пропорциональный сложности подъема или спуска. Сложность подъема или спуска - это разница между высотами.

Например, в такой местности 1 2 1 5 на путь из [0][0] в [0][1] ровер потратит 2 единицы заряд: 1 единица заряда на само движение, и еще 1 единицу заряда на подъем в [0][1]. А из [0][1] в [1][1] ровер потратит 4 единицы заряда: 1 единица на само движение, и 3 единицы (5 - 2) на подъем Вам надо рассчитать путь ровера из верхей левой [0][0] точки в правую нижнюю [N - 1][M - 1] точку с минимальной тратой заряда. Вы не заранее знаете размер фотографии, которую будете обрабатывать, N и M - произвольные неотрицательные числа.

План Сделайте план пути и планируемый расход и выведите. Для фотографии 0 4 1 3 план будет такой: [0][0]->[1][0]->[1][1] steps: 2 fuel: 5 Ровер едет из 0 в 1 в 3, сделает два шага, потратит 5 заряда. Если бы он поехал сначала в 4, потом в 3, он бы сделал то же количество шагов, но потратил бы 7 заряда. Оптимальный путь: 2 шага и 5 заряда. Если на карте есть несколько вариантов пути, выберите любой из них.

You might also like...
Fedlearn algorithm toolkit for researchers
Fedlearn algorithm toolkit for researchers

Fedlearn algorithm toolkit for researchers

A custom prime algorithm, implementation, and performance code & review
A custom prime algorithm, implementation, and performance code & review

Colander A custom prime algorithm, implementation, and performance code & review Pseudocode Algorithm 1. given a number of primes to find, the followi

Sorting Algorithm Visualiser using pygame
Sorting Algorithm Visualiser using pygame

SortingVisualiser Sorting Algorithm Visualiser using pygame Features Visualisation of some traditional sorting algorithms like quicksort and bubblesor

This project is an implementation of a simple K-means algorithm
This project is an implementation of a simple K-means algorithm

Simple-Kmeans-Clustering-Algorithm Abstract K-means is a centroid-based algorithm, or a distance-based algorithm, where we calculate the distances to

Search algorithm implementations meant for teaching

Search-py A collection of search algorithms for teaching and experimenting. Non-adversarial Search There’s a heavy separation of concerns which leads

8-puzzle-solver with UCS, ILS, IDA* algorithm
8-puzzle-solver with UCS, ILS, IDA* algorithm

Eight Puzzle 8-puzzle-solver with UCS, ILS, IDA* algorithm pre-usage requirements python3 python3-pip virtualenv prepare enviroment virtualenv -p pyth

A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

🧬 Training the car to do self-parking using a genetic algorithm
🧬 Training the car to do self-parking using a genetic algorithm

🧬 Training the car to do self-parking using a genetic algorithm

A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format.

TSP-Nearest-Insertion A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format. Instructions Load a txt file wi

Releases(V2.0)
  • V2.0(Nov 8, 2021)

    Rover v02 Update your first version of Rover code. Your task is to calculate the path with minimized fuel cost. The first version is working, but real-life tests showed that it didn't match the reality.

    What are the changes?

    Below the sea level The previous version processes only the terrain that is above sea level. But in reality, the landscape can be both above and below sea level. The new version of the code must handle different terrains. The numbers still show the height. Zero 0 is a sea level. Positive numbers show the elevation above sea level. Negative numbers mean that the terrain is below sea level. For example, here is already parsed photo of a small lake: {{"0","-1","-1","-1","0"}, {"-1","-1","-3","-1","-1"}, {"0","-1","-1","-1","0"}, {"0","0","0","0","0"}}

    Impossible Elevation Nature is unpredictable, and sometimes there are places that the Rover cannot reach. Such terrain is marked as X on the photo. Rover cannot go into that place. For example, here is a unparsed photo with unreachable terrain: 1 1 X X X 1 1 X X 8 1 1 0 0 3

    Updated movement Now your Rover can move diagonally! It still cannot get back to the same place, though. Rover still moves from the [0][0] to [N - 1][M - 1]. N and M are arbitrary positive numbers.

    Updated fuel mileage

    Fuel Mileage with Negative Numbers The fuel cost works the same with negative numbers: moving from 0 to 2 will cost the same two fuel units as moving from 0 to -2. Moving from 2 to -2 will cost the same as moving from 4 to 0.

    Fuel Mileage with Diagonal Movement Diagonal movement requires different fuel mileage. Every second diagonal move consumes two fuel units. The first diagonal move is one fuel, the second diagonal move is two fuel, the third is one fuel, the fourth is two, etc. For example, here
    1 2 1 1 2 1 1 7 0 a path from [0][0] to [1][1] costs 1 fuel for diagonal move plus 1 fuel for elevation, and a path from [1][1] to [2][2] costs 2 fuel for the second diagonal move and 2 fuel for descent.

    Error handling

    Data Data is not ideal. Sometimes the parser that converts from the photo to numbers shows bizarre results. Please make sure that the matrix contains only numerals and the 'X' sign.

    Exceptions Something may go wrong. There may be no matrix at all, or the matrix may contain weird data, or the path may start with X at [0][0]. There are tons of ways that the program can go wrong. Implement exception handling. The exception rules: if the Rover cannot start its movement, throw the CannotStartMovement exception. End the program and write the reason to path-plan.txt So, if the Rover cannot move, throw an exception and end the program. Write to the path-plan.txt something like "Cannot start a movement because ...... ." Come up with your description of a problem. Write in clear and simple English.

    Source code(tar.gz)
    Source code(zip)
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
A collection of design patterns/idioms in Python

python-patterns A collection of design patterns and idioms in Python. Current Patterns Creational Patterns: Pattern Description abstract_factory use a

Sakis Kasampalis 36.2k Jan 05, 2023
Path tracing obj - (taichi course final project) a path tracing renderer that can import and render obj files

Path tracing obj - (taichi course final project) a path tracing renderer that can import and render obj files

5 Sep 10, 2022
Planning Algorithms in AI and Robotics. MSc course at Skoltech Data Science program

Planning Algorithms in AI and Robotics course T2 2021-22 The Planning Algorithms in AI and Robotics course at Skoltech, MS in Data Science, during T2,

Mobile Robotics Lab. at Skoltech 6 Sep 21, 2022
A tictactoe where you never win, implemented using minimax algorithm

Unbeatable_TicTacToe A tictactoe where you never win, implemented using minimax algorithm Requirements Make sure you have the pygame module along with

Jessica Jolly 3 Jul 28, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

19 Oct 11, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023
Slight modification to one of the Facebook Salina examples, to test the A2C algorithm on financial series.

Facebook Salina - Gym_AnyTrading Slight modification of Facebook Salina Reinforcement Learning - A2C GPU example for financial series. The gym FOREX d

Francesco Bardozzo 5 Mar 14, 2022
A Python description of the Kinematic Bicycle Model with an animated example.

Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li

Winston H. 36 Dec 23, 2022
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generatio

Mahdi Hassanzadeh 4 Dec 24, 2022
Esse repositório tem como finalidade expor os trabalhos feitos para disciplina de Algoritmos computacionais e estruturais do CEFET-RJ no ano letivo de 2021.

Exercícios de Python 🐍 Esse repositório tem como finalidade expor os trabalhos feitos para disciplina de Algoritmos computacionais e estruturais do C

Rafaela Bezerra de Figueiredo 1 Nov 20, 2021
Apriori - An algorithm for frequent item set mining and association rule learning over relational databases

Apriori Apriori is an algorithm for frequent item set mining and association rul

Mohammad Nazari 8 Jan 10, 2022
Multiple Imputation with Random Forests in Python

miceforest: Fast, Memory Efficient Imputation with lightgbm Fast, memory efficient Multiple Imputation by Chained Equations (MICE) with lightgbm. The

Samuel Wilson 202 Dec 31, 2022
Algorithmic Trading with Python

Source code for Algorithmic Trading with Python (2020) by Chris Conlan

Chris Conlan 1.3k Jan 03, 2023
PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks.

PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks. It is developed by the Multi-Agent Artificial Intel

21 Dec 20, 2022
8 Puzzle with A* , Greedy & BFS Search in Python

8_Puzzle 8 Puzzle with A* , Greedy & BFS Search in Python Python Install Python from here. Pip Install pip from here. How to run? 🚀 Install 8_Puzzle

I3L4CK H4CK3l2 1 Jan 30, 2022
This application solves sudoku puzzles using a backtracking recursive algorithm

This application solves sudoku puzzles using a backtracking recursive algorithm. The user interface is coded with Pygame to allow users to easily input puzzles.

Glenda T 0 May 17, 2022
frePPLe - open source supply chain planning

frePPLe Open source supply chain planning FrePPLe is an easy-to-use and easy-to-implement open source advanced planning and scheduling tool for manufa

frePPLe 385 Jan 06, 2023
Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
Algorithms written in different programming languages

Data Structures and Algorithms Clean example implementations of data structures and algorithms written in different languages. List of implementations

Zoran Pandovski 1.3k Jan 03, 2023