Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Overview

Amber Electric Usage Summary

This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

You simply need to provide your Amber API token, and the tool will output a CSV like this for the last 12 months:

CHANNEL                         , 2020-09-01, 2020-09-02, 2020-09-03, ...
B4 (FEED_IN) Usage (kWh)        ,      1.351,      0.463,      0.447, ...
E3 (CONTROLLED_LOAD) Usage (kWh),      2.009,      2.669,      2.757, ...
E4 (GENERAL) Usage (kWh)        ,     20.400,     20.965,     16.011, ...

About Amber Electric

Amber Electric is an innovative energy retailer in Australia which gives customers access to the wholesale energy price as determined by the National Energy Market. This gives customers the opportunity to reduce their bills and their reliance on fossil fuels by shifting their biggest energy usage to times of the day when energy is cheaper and greener.

Amber's API

Amber gives customers access to a LOT of their own data through their public Application Programming Interface or API.

This tool relies on you having access to Amber's API, which means you need to be an Amber customer, and you need to get an API token. But that's pretty easy. Start here.

How To Get The Tool

If you're a programmer comfortable with Git, I'm sure you already know how to get this code onto your machine from GitHub.

If you're not familiar with Git, you can download this code as a Zip file by clicking on this link. Once it's downloaded, unzip the file, which will create a directory containing all the files of this project.

How To Use It

Pre-Requisites

You'll need Python 3.9+ installed.

And an Amber API token. (See above)

Setup

Using a terminal, in the directory of this project:

  1. Create a Python virtual environment with this command:
python3.9  -m  venv  venv
  1. Start using the virtual environment with this command:
source  ./venv/bin/activate
  1. Install the required dependencies with this command:
python  -m  pip  install  -r  requirements.txt

Running the tool

Using a terminal, in the directory of this project:

  1. Start using the virtual environment with this command:
source  ./venv/bin/activate
  1. Run the tool with this command, replacing YOUR_API_TOKEN with your own API token:
python  amber_usage_summary.py  --api-token  YOUR_API_TOKEN  >  my_amber_usage_data.csv

Using the above, your summary consumption data for the last year will be saved to the file called my_amber_usage_data.csv in the same directory.

Options

Help

Run the script with the -h option to see its help page:

python  amber_usage_summary.py  -h

API Token File

If you'd prefer not to paste your API token into a terminal command, you can save it in a file called apitoken in the project's directory.

Costs Summary

By default, the tool just outputs energy consumption data. If you also want a summary of your cost data, add the --include-cost option:

python  amber_usage_summary.py  --include-cost

Site Selection

If you have multiple sites in your Amber Electric account, you'll need to select one using the --site-id option:

python  amber_usage_summary.py  --site-id  SITE_ID_YOU_WANT_DATA_FOR

Date Range

By default, the report includes the last 12 full calendar months of data, plus all of the current month's data up until yesterday. You can select what date range to include in the output by adding and start date and, optionally, an end date to the command.

python  amber_usage_summary.py  2020-07-01  2021-06-30

Contributions

I'm open to accepting contributions that improve the tool.

If you're planning on altering the code with the intention of contributing the changes back, it'd be great to have a chat about it first to check we're on the same page about how the improvement might be added. It's probably easiest to create an issue describing your planned improvement (and being clear that you plan to implement it yourself).

License

All files in this project are licensed under the 3-clause BSD License. See LICENSE.md for details.

Owner
Graham Lea
Graham Lea
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022
Pyspark project that able to do joins on the spark data frames.

SPARK JOINS This project is to perform inner, all outer joins and semi joins. create_df.py: load_data.py : helps to put data into Spark data frames. d

Joshua 1 Dec 14, 2021
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
Titanic data analysis for python

Titanic-data-analysis This Repo is an analysis on Titanic_mod.csv This csv file contains some assumed data of the Titanic ship after sinking This full

Hardik Bhanot 1 Dec 26, 2021
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
Tools for working with MARC data in Catalogue Bridge.

catbridge_tools Tools for working with MARC data in Catalogue Bridge. Borrows heavily from PyMarc

1 Nov 11, 2021
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
This is a repo documenting the best practices in PySpark.

Spark-Syntax This is a public repo documenting all of the "best practices" of writing PySpark code from what I have learnt from working with PySpark f

Eric Xiao 447 Dec 25, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
A library to create multi-page Streamlit applications with ease.

A library to create multi-page Streamlit applications with ease.

Jackson Storm 107 Jan 04, 2023
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data.

MetPy MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data. MetPy follows semantic versioni

Unidata 971 Dec 25, 2022
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
scikit-survival is a Python module for survival analysis built on top of scikit-learn.

scikit-survival scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizi

Sebastian Pölsterl 876 Jan 04, 2023
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023